Expand all Collapse all | Results 1 - 2 of 2 |
1. CMB 2011 (vol 56 pp. 136)
On Constructing Ergodic Hyperfinite Equivalence Relations of Non-Product Type Product type equivalence relations are hyperfinite measured
equivalence relations, which, up to orbit equivalence, are generated
by product type odometer actions. We give a concrete example of a
hyperfinite equivalence relation of non-product type, which is the
tail equivalence on a Bratteli diagram.
In order to show that the equivalence relation constructed is not of
product type we will use a criterion called property A. This
property, introduced by Krieger for non-singular transformations, is
defined directly for hyperfinite equivalence relations in this paper.
Keywords:property A, hyperfinite equivalence relation, non-product type Categories:37A20, 37A35, 46L10 |
2. CMB 2000 (vol 43 pp. 193)
C$^*$-Convexity and the Numerical Range If $A$ is a prime C$^*$-algebra, $a \in A$ and $\lambda$ is in the
numerical range $W(a)$ of $a$, then for each $\varepsilon > 0$ there
exists an element $h \in A$ such that $\norm{h} = 1$ and $\norm{h^*
(a-\lambda)h} < \varepsilon$. If $\lambda$ is an extreme point of
$W(a)$, the same conclusion holds without the assumption that $A$ is
prime. Given any element $a$ in a von Neumann algebra (or in a
general C$^*$-algebra) $A$, all normal elements in the weak* closure
(the norm closure, respectively) of the C$^*$-convex hull of $a$ are
characterized.
Categories:47A12, 46L05, 46L10 |