1. CMB 2014 (vol 58 pp. 3)
2. CMB 2003 (vol 46 pp. 632)
 Runde, Volker

The Operator Amenability of Uniform Algebras
We prove a quantized version of a theorem by M.~V.~She\u{\i}nberg:
A uniform algebra equipped with its canonical, {\it i.e.}, minimal,
operator space structure is operator amenable if and only if it is
a commutative $C^\ast$algebra.
Keywords:uniform algebras, amenable Banach algebras, operator amenability, minimal, operator space Categories:46H20, 46H25, 46J10, 46J40, 47L25 

3. CMB 2001 (vol 44 pp. 504)
 Zhang, Yong

Weak Amenability of a Class of Banach Algebras
We show that, if a Banach algebra $\A$ is a left ideal in its second
dual algebra and has a left bounded approximate identity, then the
weak amenability of $\A$ implies the ($2m+1$)weak amenability of $\A$
for all $m\geq 1$.
Keywords:$n$weak amenability, left ideals, left bounded approximate identity Categories:46H20, 46H10, 46H25 
