1. CMB Online first
2. CMB Online first
 He, Ziyi; Yang, Dachun; Yuan, Wen

LittlewoodPaley Characterizations of SecondOrder Sobolev Spaces via Averages on Balls
In this paper, the authors characterize secondorder Sobolev
spaces $W^{2,p}({\mathbb R}^n)$,
with $p\in [2,\infty)$ and $n\in\mathbb N$ or $p\in (1,2)$ and
$n\in\{1,2,3\}$, via the Lusin area
function and the LittlewoodPaley $g_\lambda^\ast$function in
terms of ball means.
Keywords:Sobolev space, ball means, Lusinarea function, $g_\lambda^*$function Categories:46E35, 42B25, 42B20, 42B35 

3. CMB Online first
 Liu, Feng; Wu, Huoxiong

On the Regularity of the Multisublinear Maximal Functions
This paper is concerned with the study of
the regularity for the multisublinear maximal operator. It is
proved that the multisublinear maximal operator is bounded on
firstorder Sobolev spaces. Moreover, two key pointwise
inequalities for the partial derivatives of the multisublinear
maximal functions are established. As an application, the
quasicontinuity on the multisublinear maximal function is also
obtained.
Keywords:regularity, multisublinear maximal operator, Sobolev spaces, partial deviative, quasicontinuity Categories:42B25, 46E35 

4. CMB 2008 (vol 51 pp. 236)
5. CMB 2004 (vol 47 pp. 540)
 Jain, Pankaj; Jain, Pawan K.; Gupta, Babita

Compactness of HardyType Operators over StarShaped Regions in $\mathbb{R}^N$
We study a compactness property of the operators between weighted
Lebesgue spaces that average a function over certain domains involving
a starshaped region. The cases covered are (i) when the average is
taken over a difference of two dilations of a starshaped region in
$\RR^N$, and (ii) when the average is taken over all dilations of
starshaped regions in $\RR^N$. These cases include, respectively,
the average over annuli and the average over balls centered at origin.
Keywords:Hardy operator, HardySteklov operator, compactness, boundedness, starshaped regions Categories:46E35, 26D10 

6. CMB 2004 (vol 47 pp. 206)
7. CMB 1998 (vol 41 pp. 257)