Expand all Collapse all | Results 1 - 5 of 5 |
1. CMB Online first
Measures of Noncompactness in Regular Spaces Previous results by the author on the connection
between three of measures
of non-compactness obtained for $L_p$, are extended
to regular spaces of measurable
functions.
An example of advantage
in some cases one of them in comparison with another is given.
Geometric characteristics of regular spaces are determined.
New theorems for $(k,\beta)$-boundedness of partially additive
operators are proved.
Keywords:measure of non-compactness, condensing map, partially additive operator, regular space, ideal space Categories:47H08, 46E30, 47H99, 47G10 |
2. CMB Online first
Interpolation of Morrey Spaces on Metric Measure Spaces In this article, via the classical complex interpolation method
and some interpolation methods traced to Gagliardo,
the authors obtain an interpolation theorem for
Morrey spaces on quasi-metric measure spaces, which generalizes
some known results on ${\mathbb R}^n$.
Keywords:complex interpolation, Morrey space, Gagliardo interpolation, CalderÃ³n product, quasi-metric measure space Categories:46B70, 46E30 |
3. CMB 2008 (vol 51 pp. 67)
Rearrangement-Invariant Functionals with Applications to Traces on Symmetrically Normed Ideals We present a construction of singular rearrangement
invariant functionals on Marcinkiewicz function/operator spaces.
The functionals constructed differ from all previous examples in
the literature in that they fail to be symmetric. In other words,
the functional $\phi$ fails the condition that if $x\pprec y$
(Hardy-Littlewood-Polya submajorization) and $0\leq x,y$, then
$0\le \phi(x)\le \phi(y).$ We apply our results to singular traces
on symmetric operator spaces (in particular on
symmetrically-normed ideals of compact operators), answering
questions raised by Guido and Isola.
Categories:46L52, 47B10, 46E30 |
4. CMB 1999 (vol 42 pp. 321)
Averaging Operators and Martingale Inequalities in Rearrangement Invariant Function Spaces We shall study some connection between averaging operators and
martingale inequalities in rearrangement invariant function spaces.
In Section~2 the equivalence between Shimogaki's theorem and some
martingale inequalities will be established, and in Section~3 the
equivalence between Boyd's theorem and martingale inequalities with
change of probability measure will be established.
Keywords:martingale inequalities, rearrangement invariant function spaces Categories:60G44, 60G46, 46E30 |
5. CMB 1998 (vol 41 pp. 41)
On the Clarke subdifferential of an integral functional on $L_p$, $1\leq p < \infty$ Given an integral functional defined on $L_p$, $1 \leq p <\infty$,
under a growth condition we give an upper bound of the Clarke
directional derivative and we obtain a nice inclusion between the
Clarke subdifferential of the integral functional and the set of
selections of the subdifferential of the integrand.
Keywords:Integral functional, integrand, epi-derivative Categories:28A25, 49J52, 46E30 |