Expand all Collapse all  Results 1  7 of 7 
1. CMB Online first
Isometries and Hermitian Operators on Zygmund Spaces In this paper we characterize the isometries of subspaces of the little Zygmund space. We show that the isometries of these spaces are surjective and represented as integral operators. We also show that all hermitian operators on these settings are bounded.
Keywords:Zygmund spaces, the little Zygmund space, Hermitian operators, surjective linear isometries, generators of oneparameter groups of surjective isometries Categories:46E15, 47B15, 47B38 
2. CMB 2013 (vol 57 pp. 364)
How Lipschitz Functions Characterize the Underlying Metric Spaces Let $X, Y$ be metric spaces and $E, F$ be Banach spaces. Suppose that
both $X,Y$ are realcompact, or both $E,F$ are realcompact.
The zero set of a vectorvalued function $f$ is denoted by $z(f)$.
A linear bijection $T$ between local or generalized Lipschitz vectorvalued function spaces
is said to preserve zeroset containments or nonvanishing functions
if
\[z(f)\subseteq z(g)\quad\Longleftrightarrow\quad z(Tf)\subseteq z(Tg),\]
or
\[z(f) = \emptyset\quad \Longleftrightarrow\quad z(Tf)=\emptyset,\]
respectively.
Every zeroset containment preserver, and every nonvanishing function preserver when
$\dim E =\dim F\lt +\infty$, is a weighted composition operator
$(Tf)(y)=J_y(f(\tau(y)))$.
We show that the map $\tau\colon Y\to X$ is a locally (little) Lipschitz homeomorphism.
Keywords:(generalized, locally, little) Lipschitz functions, zeroset containment preservers, biseparating maps Categories:46E40, 54D60, 46E15 
3. CMB 2011 (vol 56 pp. 272)
On Super Weakly Compact Convex Sets and Representation of the Dual of the Normed Semigroup They Generate 
On Super Weakly Compact Convex Sets and Representation of the Dual of the Normed Semigroup They Generate In this note, we first give a characterization of super weakly
compact convex sets of a Banach space $X$:
a closed bounded convex set $K\subset X$ is
super weakly compact if and only if there exists a $w^*$ lower
semicontinuous seminorm $p$ with $p\geq\sigma_K\equiv\sup_{x\in
K}\langle\,\cdot\,,x\rangle$ such that $p^2$ is uniformly FrÃ©chet
differentiable on each bounded set of $X^*$. Then we present a
representation theorem for the dual of the semigroup $\textrm{swcc}(X)$
consisting of all the nonempty super weakly compact convex sets of the
space $X$.
Keywords:super weakly compact set, dual of normed semigroup, uniform FrÃ©chet differentiability, representation Categories:20M30, 46B10, 46B20, 46E15, 46J10, 49J50 
4. CMB 2011 (vol 54 pp. 680)
$2$Local Isometries on Spaces of Lipschitz Functions Let $(X,d)$ be a metric space, and let $\mathop{\textrm{Lip}}(X)$ denote the Banach
space of all scalarvalued bounded Lipschitz functions $f$ on $X$
endowed with one of the natural norms
$
\ f\ =\max \{\ f\ _\infty ,L(f)\}$ or $\f\ =\
f\ _\infty +L(f),
$
where $L(f)$ is the
Lipschitz constant of $f.$ It is said that the isometry
group of $\mathop{\textrm{Lip}}(X)$ is canonical if every
surjective linear isometry of
$\mathop{\textrm{Lip}}(X) $ is induced by a surjective isometry of $X$.
In this paper
we prove that if $X$ is bounded separable and the isometry group of
$\mathop{\textrm{Lip}}(X)$ is canonical, then every $2$local isometry
of $\mathop{\textrm{Lip}}(X)$ is
a surjective linear isometry. Furthermore, we give a complete
description of all $2$local isometries of $\mathop{\textrm{Lip}}(X)$ when $X$ is
bounded.
Keywords:isometry, local isometry, Lipschitz function Categories:46B04, 46J10, 46E15 
5. CMB 2010 (vol 53 pp. 466)
Separating Maps between Spaces of VectorValued Absolutely Continuous Functions In this paper we give a description of separating or disjointness preserving linear bijections on spaces of vectorvalued absolutely continuous functions defined on compact subsets of the real line. We obtain that they are continuous and biseparating in the finitedimensional case. The infinitedimensional case is also studied.
Keywords:separating maps, disjointness preserving, vectorvalued absolutely continuous functions, automatic continuity Categories:47B38, 46E15, 46E40, 46H40, 47B33 
6. CMB 2004 (vol 47 pp. 49)
The Essential Norm of a Blochto$Q_p$ Composition Operator The $Q_p$ spaces coincide with the Bloch space for $p>1$ and are
subspaces of $\BMOA$ for $0

7. CMB 1999 (vol 42 pp. 139)
Essential Norm and Weak Compactness of Composition Operators on Weighted Banach Spaces of Analytic Functions 
Essential Norm and Weak Compactness of Composition Operators on Weighted Banach Spaces of Analytic Functions Every weakly compact composition operator between weighted Banach
spaces $H_v^{\infty}$ of analytic functions with weighted supnorms is
compact. Lower and upper estimates of the essential norm of
continuous composition operators are obtained. The norms of the point
evaluation functionals on the Banach space $H_v^{\infty}$ are also
estimated, thus permitting to get new characterizations of compact
composition operators between these spaces.
Keywords:weighted Banach spaces of holomorphic functions, composition operator, compact operator, weakly compact operator Categories:47B38, 30D55, 46E15 