1. CMB 2016 (vol 59 pp. 769)
 GarcíaPacheco, Francisco Javier; Hill, Justin R.

Geometric Characterizations of Hilbert Spaces
We study some geometric properties related to the set $\Pi_X:=
\{
(x,x^*
)\in\mathsf{S}_X\times \mathsf{S}_{X^*}:x^*
(x
)=1
\}$ obtaining two characterizations of Hilbert spaces
in the category of Banach spaces. We also compute the distance
of a generic element $
(h,k
)\in H\oplus_2 H$ to $\Pi_H$ for $H$ a Hilbert space.
Keywords:Hilbert space, extreme point, smooth, $\mathsf{L}^2$summands Categories:46B20, 46C05 

2. CMB 2013 (vol 57 pp. 463)
 Bownik, Marcin; Jasper, John

Constructive Proof of Carpenter's Theorem
We give a constructive proof of Carpenter's Theorem due to Kadison.
Unlike the original proof our approach also yields the
real case of this theorem.
Keywords:diagonals of projections, the SchurHorn theorem, the Pythagorean theorem, the Carpenter theorem, spectral theory Categories:42C15, 47B15, 46C05 

3. CMB 2012 (vol 57 pp. 42)
 Fonf, Vladimir P.; Zanco, Clemente

Covering the Unit Sphere of Certain Banach Spaces by Sequences of Slices and Balls
e prove that, given any covering of any infinitedimensional Hilbert space $H$ by countably many closed balls, some point exists in $H$ which belongs to infinitely many balls. We do that by characterizing isomorphically polyhedral separable Banach spaces as those whose unit sphere admits a pointfinite covering by the union of countably many slices of the unit ball.
Keywords:point finite coverings, slices, polyhedral spaces, Hilbert spaces Categories:46B20, 46C05, 52C17 

4. CMB 2007 (vol 50 pp. 85)
 Han, Deguang

Classification of Finite GroupFrames and SuperFrames
Given a finite group $G$, we examine the classification of all
frame representations of $G$ and the classification of all
$G$frames, \emph{i.e.,} frames induced by group representations of $G$.
We show that the exact number of equivalence classes of $G$frames
and the exact number of frame representations can be explicitly
calculated. We also discuss how to calculate the largest number
$L$ such that there exists an $L$tuple of strongly disjoint
$G$frames.
Keywords:frames, groupframes, frame representations, disjoint frames Categories:42C15, 46C05, 47B10 

5. CMB 2002 (vol 45 pp. 60)