Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 46B22 ( Radon-Nikod{y}m, Kreiin-Milman and related properties [See also 46G10] )

  Expand all        Collapse all Results 1 - 1 of 1

1. CMB 2014 (vol 58 pp. 150)

Ostrovskii, Mikhail I.
Connections Between Metric Characterizations of Superreflexivity and the Radon-Nikodý Property for Dual Banach Spaces
Johnson and Schechtman (2009) characterized superreflexivity in terms of finite diamond graphs. The present author characterized the Radon-Nikodým property (RNP) for dual spaces in terms of the infinite diamond. This paper is devoted to further study of relations between metric characterizations of superreflexivity and the RNP for dual spaces. The main result is that finite subsets of any set $M$ whose embeddability characterizes the RNP for dual spaces, characterize superreflexivity. It is also observed that the converse statement does not hold, and that $M=\ell_2$ is a counterexample.

Keywords:Banach space, diamond graph, finite representability, metric characterization, Radon-Nikodým property, superreflexivity
Categories:46B85, 46B07, 46B22

© Canadian Mathematical Society, 2015 :