CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 46B07 ( Local theory of Banach spaces )

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB 2011 (vol 54 pp. 726)

Ostrovskii, M. I.
Auerbach Bases and Minimal Volume Sufficient Enlargements
Let $B_Y$ denote the unit ball of a normed linear space $Y$. A symmetric, bounded, closed, convex set $A$ in a finite dimensional normed linear space $X$ is called a sufficient enlargement for $X$ if, for an arbitrary isometric embedding of $X$ into a Banach space $Y$, there exists a linear projection $P\colon Y\to X$ such that $P(B_Y)\subset A$. Each finite dimensional normed space has a minimal-volume sufficient enlargement that is a parallelepiped; some spaces have ``exotic'' minimal-volume sufficient enlargements. The main result of the paper is a characterization of spaces having ``exotic'' minimal-volume sufficient enlargements in terms of Auerbach bases.

Keywords:Banach space, Auerbach basis, sufficient enlargement
Categories:46B07, 52A21, 46B15

2. CMB 2007 (vol 50 pp. 138)

Sari, Bünyamin
On the Structure of the Set of Symmetric Sequences in Orlicz Sequence Spaces
We study the structure of the sets of symmetric sequences and spreading models of an Orlicz sequence space equipped with partial order with respect to domination of bases. In the cases that these sets are ``small'', some descriptions of the structure of these posets are obtained.

Categories:46B20, 46B45, 46B07

3. CMB 2003 (vol 46 pp. 242)

Litvak, A. E.; Milman, V. D.
Euclidean Sections of Direct Sums of Normed Spaces
We study the dimension of ``random'' Euclidean sections of direct sums of normed spaces. We compare the obtained results with results from \cite{LMS}, to show that for the direct sums the standard randomness with respect to the Haar measure on Grassmanian coincides with a much ``weaker'' randomness of ``diagonal'' subspaces (Corollary~\ref{sle} and explanation after). We also add some relative information on ``phase transition''.

Keywords:Dvoretzky theorem, ``random'' Euclidean section, phase transition in asymptotic convexity
Categories:46B07, 46B09, 46B20, 52A21

© Canadian Mathematical Society, 2014 : https://cms.math.ca/