Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 46B04 ( Isometric theory of Banach spaces )

  Expand all        Collapse all Results 1 - 8 of 8

1. CMB Online first

Yumei, Ma
Isometry on linear n-G-quasi normed spaces
This paper generalizes the Aleksandrov problem: the Mazur-Ulam theorem on $n$-G-quasi normed spaces. It proves that a one-$n$-distance preserving mapping is an $n$-isometry if and only if it has the zero-$n$-G-quasi preserving property, and two kinds of $n$-isometries on $n$-G-quasi normed space are equivalent; we generalize the Benz theorem to n-normed spaces with no restrictions on the dimension of spaces.

Keywords:$n$-G-quasi norm, Mazur-Ulam theorem, Aleksandrov problem, $n$-isometry, $n$-0-distance
Categories:46B20, 46B04, 51K05

2. CMB 2015 (vol 58 pp. 459)

Casini, Emanuele; Miglierina, Enrico; Piasecki, Lukasz
Hyperplanes in the Space of Convergent Sequences and Preduals of $\ell_1$
The main aim of the present paper is to investigate various structural properties of hyperplanes of $c$, the Banach space of the convergent sequences. In particular, we give an explicit formula for the projection constants and we prove that an hyperplane of $c$ is isometric to the whole space if and only if it is $1$-complemented. Moreover, we obtain the classification of those hyperplanes for which their duals are isometric to $\ell_{1}$ and we give a complete description of the preduals of $\ell_{1}$ under the assumption that the standard basis of $\ell_{1}$ is weak$^{*}$-convergent.

Keywords:space of convergent sequences, projection, $\ell_1$-predual, hyperplane
Categories:46B45, 46B04

3. CMB 2014 (vol 57 pp. 810)

Godefroy, G.
Uniqueness of Preduals in Spaces of Operators
We show that if $E$ is a separable reflexive space, and $L$ is a weak-star closed linear subspace of $L(E)$ such that $L\cap K(E)$ is weak-star dense in $L$, then $L$ has a unique isometric predual. The proof relies on basic topological arguments.

Categories:46B20, 46B04

4. CMB 2011 (vol 54 pp. 411)

Davidson, Kenneth R.; Wright, Alex
Operator Algebras with Unique Preduals
We show that every free semigroup algebra has a (strongly) unique Banach space predual. We also provide a new simpler proof that a weak-$*$ closed unital operator algebra containing a weak-$*$ dense subalgebra of compact operators has a unique Banach space predual.

Keywords:unique predual, free semigroup algebra, CSL algebra
Categories:47L50, 46B04, 47L35

5. CMB 2011 (vol 54 pp. 680)

Jiménez-Vargas, A.; Villegas-Vallecillos, Moisés
$2$-Local Isometries on Spaces of Lipschitz Functions
Let $(X,d)$ be a metric space, and let $\mathop{\textrm{Lip}}(X)$ denote the Banach space of all scalar-valued bounded Lipschitz functions $f$ on $X$ endowed with one of the natural norms $ \| f\| =\max \{\| f\| _\infty ,L(f)\}$ or $\|f\| =\| f\| _\infty +L(f), $ where $L(f)$ is the Lipschitz constant of $f.$ It is said that the isometry group of $\mathop{\textrm{Lip}}(X)$ is canonical if every surjective linear isometry of $\mathop{\textrm{Lip}}(X) $ is induced by a surjective isometry of $X$. In this paper we prove that if $X$ is bounded separable and the isometry group of $\mathop{\textrm{Lip}}(X)$ is canonical, then every $2$-local isometry of $\mathop{\textrm{Lip}}(X)$ is a surjective linear isometry. Furthermore, we give a complete description of all $2$-local isometries of $\mathop{\textrm{Lip}}(X)$ when $X$ is bounded.

Keywords:isometry, local isometry, Lipschitz function
Categories:46B04, 46J10, 46E15

6. CMB 2001 (vol 44 pp. 370)

Weston, Anthony
On Locating Isometric $\ell_{1}^{(n)}$
Motivated by a question of Per Enflo, we develop a hypercube criterion for locating linear isometric copies of $\lone$ in an arbitrary real normed space $X$. The said criterion involves finding $2^{n}$ points in $X$ that satisfy one metric equality. This contrasts nicely to the standard classical criterion wherein one seeks $n$ points that satisfy $2^{n-1}$ metric equalities.

Keywords:normed spaces, hypercubes
Categories:46B04, 05C10, 05B99

7. CMB 1999 (vol 42 pp. 344)

Koldobsky, Alexander
Positive Definite Distributions and Subspaces of $L_p$ With Applications to Stable Processes
We define embedding of an $n$-dimensional normed space into $L_{-p}$, $0
Categories:42A82, 46B04, 46F12, 60E07

8. CMB 1998 (vol 41 pp. 279)

Acosta, María D.; Galán, Manuel Ruiz
New characterizations of the reflexivity in terms of the set of norm attaining functionals
As a consequence of results due to Bourgain and Stegall, on a separable Banach space whose unit ball is not dentable, the set of norm attaining functionals has empty interior (in the norm topology). First we show that any Banach space can be renormed to fail this property. Then, our main positive result can be stated as follows: if a separable Banach space $X$ is very smooth or its bidual satisfies the $w^{\ast }$-Mazur intersection property, then either $X$ is reflexive or the set of norm attaining functionals has empty interior, hence the same result holds if $X$ has the Mazur intersection property and so, if the norm of $X$ is Fr\'{e}chet differentiable. However, we prove that smoothness is not a sufficient condition for the same conclusion.

Categories:46B04, 46B10, 46B20

© Canadian Mathematical Society, 2016 :