Expand all Collapse all  Results 1  6 of 6 
1. CMB Online first
Uniqueness of preduals in spaces of operators We show that if $E$ is a separable reflexive space, and $L$ is a weakstar closed linear subspace of
$L(E)$ such that $L\cap K(E)$ is weakstar dense in $L$, then $L$ has a unique isometric predual. The proof relies on basic topological arguments.
Categories:46B20, 46B04 
2. CMB 2011 (vol 54 pp. 411)
Operator Algebras with Unique Preduals We show that every free semigroup algebra has a (strongly) unique
Banach space predual. We also provide a new simpler proof that a
weak$*$ closed unital operator algebra containing a weak$*$
dense subalgebra of compact operators has a unique Banach space
predual.
Keywords:unique predual, free semigroup algebra, CSL algebra Categories:47L50, 46B04, 47L35 
3. CMB 2011 (vol 54 pp. 680)
$2$Local Isometries on Spaces of Lipschitz Functions Let $(X,d)$ be a metric space, and let $\mathop{\textrm{Lip}}(X)$ denote the Banach
space of all scalarvalued bounded Lipschitz functions $f$ on $X$
endowed with one of the natural norms
$
\ f\ =\max \{\ f\ _\infty ,L(f)\}$ or $\f\ =\
f\ _\infty +L(f),
$
where $L(f)$ is the
Lipschitz constant of $f.$ It is said that the isometry
group of $\mathop{\textrm{Lip}}(X)$ is canonical if every
surjective linear isometry of
$\mathop{\textrm{Lip}}(X) $ is induced by a surjective isometry of $X$.
In this paper
we prove that if $X$ is bounded separable and the isometry group of
$\mathop{\textrm{Lip}}(X)$ is canonical, then every $2$local isometry
of $\mathop{\textrm{Lip}}(X)$ is
a surjective linear isometry. Furthermore, we give a complete
description of all $2$local isometries of $\mathop{\textrm{Lip}}(X)$ when $X$ is
bounded.
Keywords:isometry, local isometry, Lipschitz function Categories:46B04, 46J10, 46E15 
4. CMB 2001 (vol 44 pp. 370)
On Locating Isometric $\ell_{1}^{(n)}$ Motivated by a question of Per Enflo, we develop a hypercube criterion
for locating linear isometric copies of $\lone$ in an arbitrary real
normed space $X$.
The said criterion involves finding $2^{n}$ points in $X$ that satisfy
one metric equality. This contrasts nicely to the standard classical
criterion wherein one seeks $n$ points that satisfy $2^{n1}$ metric
equalities.
Keywords:normed spaces, hypercubes Categories:46B04, 05C10, 05B99 
5. CMB 1999 (vol 42 pp. 344)
Positive Definite Distributions and Subspaces of $L_p$ With Applications to Stable Processes We define embedding of an $n$dimensional normed space into
$L_{p}$, $0

6. CMB 1998 (vol 41 pp. 279)
New characterizations of the reflexivity in terms of the set of norm attaining functionals As a consequence of results due to Bourgain and Stegall, on a
separable Banach space whose unit ball is not dentable, the
set of norm attaining functionals has empty interior (in the
norm topology). First we show that any Banach space can be renormed to
fail this property. Then, our main positive result can be stated as
follows: if a separable Banach space $X$ is very smooth or its bidual
satisfies the $w^{\ast }$Mazur intersection property, then either $X$
is reflexive or the set of norm attaining functionals has empty
interior, hence the same result holds if $X$ has the Mazur
intersection property and so, if the norm of $X$ is Fr\'{e}chet
differentiable. However, we prove that smoothness is not a sufficient
condition for the same conclusion.
Categories:46B04, 46B10, 46B20 