CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 46A35 ( Summability and bases [See also 46B15] )

  Expand all        Collapse all Results 1 - 1 of 1

1. CMB 2004 (vol 47 pp. 108)

Śliwa, Wiesław
On Universal Schauder Bases in Non-Archimedean Fréchet Spaces
It is known that any non-archimedean Fr\'echet space of countable type is isomorphic to a subspace of $c_0^{\mathbb{N}}$. In this paper we prove that there exists a non-archimedean Fr\'echet space $U$ with a basis $(u_n)$ such that any basis $(x_n)$ in a non-archimedean Fr\'echet space $X$ is equivalent to a subbasis $(u_{k_n})$ of $(u_n)$. Then any non-archimedean Fr\'echet space with a basis is isomorphic to a complemented subspace of $U$. In contrast to this, we show that a non-archimedean Fr\'echet space $X$ with a basis $(x_n)$ is isomorphic to a complemented subspace of $c_0^{\mathbb{N}}$ if and only if $X$ is isomorphic to one of the following spaces: $c_0$, $c_0 \times \mathbb{K}^{\mathbb{N}}$, $\mathbb{K}^{\mathbb{N}}$, $c_0^{\mathbb{N}}$. Finally, we prove that there is no nuclear non-archimedean Fr\'echet space $H$ with a basis $(h_n)$ such that any basis $(y_n)$ in a nuclear non-archimedean Fr\'echet space $Y$ is equivalent to a subbasis $(h_{k_n})$ of $(h_n)$.

Keywords:universal bases, complemented subspaces with bases
Categories:46S10, 46A35

© Canadian Mathematical Society, 2014 : https://cms.math.ca/