Expand all Collapse all | Results 1 - 25 of 184 |
1. CMB Online first
About the Bound of the $\mathrm{C}^*$ Exponential Length Let $X$ be a compact Hausdorff space. In this paper, we give an
example to show that there is $u\in \mathrm{C}(X)\otimes \mathrm{M}_n$
with $\det (u(x))=1$ for all $x\in X$ and $u\sim_h 1$ such that the
$\mathrm{C}^*$ exponential length of $u$
(denoted by $cel(u)$) can not be controlled by
$\pi$. Moreover, in simple inductive limit $\mathrm{C}^*$-algebras,
similar examples also exist.
Keywords:exponential length Category:46L05 |
2. CMB Online first
On the Structure of Cuntz Semigroups in (Possibly) Nonunital C*-algebras We examine the ranks of operators in semi-finite $\mathrm{C}^*$-algebras
as measured by their densely defined lower semicontinuous traces.
We first prove that a unital simple $\mathrm{C}^*$-algebra whose
extreme tracial boundary is nonempty and finite contains positive
operators of every possible rank, independent of the property
of strict comparison. We then turn to nonunital simple algebras
and establish criteria that imply that the Cuntz semigroup is
recovered functorially from the Murray-von Neumann semigroup
and the space of densely defined lower semicontinuous traces.
Finally, we prove that these criteria are satisfied by not-necessarily-unital
approximately subhomogeneous algebras of slow dimension growth.
Combined with results of the first-named author, this shows that
slow dimension growth coincides with $\mathcal Z$-stability,
for approximately subhomogeneous algebras.
Keywords:nuclear C*-algebras, Cuntz semigroup, dimension functions, stably projectionless C*-algebras, approximately subhomogeneous C*-algebras, slow dimension growth Categories:46L35, 46L05, 46L80, 47L40, 46L85 |
3. CMB Online first
Approximate amenability of Segal algebras II We prove that every proper Segal algebra of a SIN group is not
approximately amenable.
Keywords:Segal algebras, approximate amenability, SIN groups, commutative Banach algebras Categories:46H20, 43A20 |
4. CMB Online first
Approximate amenability of Segal algebras II We prove that every proper Segal algebra of a SIN group is not
approximately amenable.
Keywords:Segal algebras, approximate amenability, SIN groups, commutative Banach algebras Categories:46H20, 43A20 |
5. CMB Online first
Exact and Approximate Operator Parallelism Extending the notion of parallelism we introduce the concept of
approximate parallelism in normed spaces and then substantially
restrict ourselves to the setting of Hilbert space operators endowed
with the operator norm. We present several characterizations of the
exact and approximate operator parallelism in the algebra
$\mathbb{B}(\mathscr{H})$ of bounded linear operators acting on a
Hilbert space $\mathscr{H}$. Among other things, we investigate the
relationship between approximate parallelism and norm of inner
derivations on $\mathbb{B}(\mathscr{H})$. We also characterize the
parallel elements of a $C^*$-algebra by using states. Finally we
utilize the linking algebra to give some equivalence assertions
regarding parallel elements in a Hilbert $C^*$-module.
Keywords:$C^*$-algebra, approximate parallelism, operator parallelism, Hilbert $C^*$-module Categories:47A30, 46L05, 46L08, 47B47, 15A60 |
6. CMB Online first
Characters on $C( X)$ The precise condition on a completely regular space $X$ for every character on
$C(X) $ to be an evaluation at some point in $X$ is that $X$ be
realcompact. Usually, this classical result is obtained relying heavily on
involved (and even nonconstructive) extension arguments. This note provides a
direct proof that is accessible to a large audience.
Keywords:characters, realcompact, evaluation, real-valued continuous functions Categories:54C30, 46E25 |
7. CMB Online first
Strong Asymptotic Freeness for Free Orthogonal Quantum Groups It is known that the normalized standard generators of the free
orthogonal quantum group $O_N^+$ converge in distribution to a free
semicircular system as $N \to \infty$. In this note, we
substantially improve this convergence result by proving that, in
addition to distributional convergence, the operator norm of any
non-commutative polynomial in the normalized standard generators of
$O_N^+$ converges as $N \to \infty$ to the operator norm of the
corresponding non-commutative polynomial in a standard free
semicircular system. Analogous strong convergence results are obtained
for the generators of free unitary quantum groups. As applications of
these results, we obtain a matrix-coefficient version of our strong
convergence theorem, and we recover a well known $L^2$-$L^\infty$ norm
equivalence for non-commutative polynomials in free semicircular
systems.
Keywords:quantum groups, free probability, asymptotic free independence, strong convergence, property of rapid decay Categories:46L54, 20G42, 46L65 |
8. CMB Online first
Approximate Fixed Point Sequences of Nonlinear Semigroup in Metric Spaces In this paper, we investigate the common
approximate fixed point sequences of nonexpansive semigroups of
nonlinear mappings $\{T_t\}_{t \geq 0}$, i.e., a family such that
$T_0(x)=x$, $T_{s+t}=T_s(T_t(x))$, where the domain is a metric space
$(M,d)$. In particular we prove that under suitable conditions, the
common approximate fixed point sequences set is the same as the common
approximate fixed point sequences set of two mappings from the family.
Then we use the Ishikawa iteration to construct a common approximate
fixed point sequence of nonexpansive semigroups of nonlinear
mappings.
Keywords:approximate fixed point, fixed point, hyperbolic metric space, Ishikawa iterations, nonexpansive mapping, semigroup of mappings, uniformly convex hyperbolic space Categories:47H09, 46B20, 47H10, 47E10 |
9. CMB Online first
Free Locally Convex Spaces and the $k$-space Property Let $L(X)$ be the free locally convex space over a Tychonoff space $X$. Then $L(X)$ is a $k$-space if and only if $X$ is a countable discrete space. We prove also that $L(D)$ has uncountable tightness for every uncountable discrete space $D$.
Keywords:free locally convex space, $k$-space, countable tightness Categories:46A03, 54D50, 54A25 |
10. CMB Online first
On an Exponential Functional Inequality and its Distributional Version Let $G$ be a group and $\mathbb K=\mathbb C$ or $\mathbb
R$.
In this article, as a generalization of the result of Albert
and Baker,
we investigate the behavior of bounded
and unbounded functions $f\colon G\to \mathbb K$ satisfying the inequality
$
\Bigl|f
\Bigl(\sum_{k=1}^n x_k
\Bigr)-\prod_{k=1}^n f(x_k)
\Bigr|\le \phi(x_2, \dots, x_n),\quad \forall\, x_1, \dots,
x_n\in G,
$
where $\phi\colon G^{n-1}\to [0, \infty)$. Also, as a distributional
version of the above inequality we consider the stability of
the functional equation
\begin{equation*}
u\circ S - \overbrace{u\otimes \cdots \otimes u}^{n-\text {times}}=0,
\end{equation*}
where $u$ is a Schwartz distribution or Gelfand hyperfunction,
$\circ$ and $\otimes$ are the pullback and tensor product of
distributions, respectively, and $S(x_1, \dots, x_n)=x_1+ \dots
+x_n$.
Keywords:distribution, exponential functional equation, Gelfand hyperfunction, stability Categories:46F99, 39B82 |
11. CMB Online first
Measures of Noncompactness in Regular Spaces Previous results by the author on the connection
between three of measures
of non-compactness obtained for $L_p$, are extended
to regular spaces of measurable
functions.
An example of advantage
in some cases one of them in comparison with another is given.
Geometric characteristics of regular spaces are determined.
New theorems for $(k,\beta)$-boundedness of partially additive
operators are proved.
Keywords:measure of non-compactness, condensing map, partially additive operator, regular space, ideal space Categories:47H08, 46E30, 47H99, 47G10 |
12. CMB Online first
Limited Sets and Bibasic Sequences Bibasic sequences are used to study relative weak compactness
and relative norm compactness of limited sets.
Keywords:limited sets, $L$-sets, bibasic sequences, the Dunford-Pettis property Categories:46B20, 46B28, 28B05 |
13. CMB Online first
Property T and Amenable Transformation Group $C^*$-algebras It is well known that a discrete group which is both amenable and
has Kazhdan's Property T must be finite. In this note we generalize
the above statement to the case of transformation groups. We show
that if $G$ is a discrete amenable group acting on a compact
Hausdorff space $X$, then the transformation group $C^*$-algebra
$C^*(X, G)$ has Property T if and only if both $X$ and $G$ are finite. Our
approach does not rely on the use of tracial states on $C^*(X, G)$.
Keywords:Property T, $C^*$-algebras, transformation group, amenable Categories:46L55, 46L05 |
14. CMB Online first
Uniqueness of preduals in spaces of operators We show that if $E$ is a separable reflexive space, and $L$ is a weak-star closed linear subspace of
$L(E)$ such that $L\cap K(E)$ is weak-star dense in $L$, then $L$ has a unique isometric predual. The proof relies on basic topological arguments.
Categories:46B20, 46B04 |
15. CMB 2013 (vol 57 pp. 640)
Equilateral Sets and a SchÃ¼tte Theorem for the $4$-norm A well-known theorem of SchÃ¼tte (1963) gives a sharp lower bound for
the ratio of the maximum and minimum distances between $n+2$ points in
$n$-dimensional Euclidean space.
In this note we adapt BÃ¡rÃ¡ny's elegant proof (1994) of this theorem to the space $\ell_4^n$.
This gives a new proof that the largest cardinality of an equilateral
set in $\ell_4^n$ is $n+1$, and gives a constructive bound for an
interval $(4-\varepsilon_n,4+\varepsilon_n)$ of values of $p$ close to $4$ for which it is known that the largest cardinality of an equilateral set in $\ell_p^n$ is $n+1$.
Categories:46B20, 52A21, 52C17 |
16. CMB 2013 (vol 57 pp. 463)
Constructive Proof of Carpenter's Theorem We give a constructive proof of Carpenter's Theorem due to Kadison.
Unlike the original proof our approach also yields the
real case of this theorem.
Keywords:diagonals of projections, the Schur-Horn theorem, the Pythagorean theorem, the Carpenter theorem, spectral theory Categories:42C15, 47B15, 46C05 |
17. CMB 2013 (vol 57 pp. 598)
Interpolation of Morrey Spaces on Metric Measure Spaces In this article, via the classical complex interpolation method
and some interpolation methods traced to Gagliardo,
the authors obtain an interpolation theorem for
Morrey spaces on quasi-metric measure spaces, which generalizes
some known results on ${\mathbb R}^n$.
Keywords:complex interpolation, Morrey space, Gagliardo interpolation, CalderÃ³n product, quasi-metric measure space Categories:46B70, 46E30 |
18. CMB 2013 (vol 57 pp. 364)
How Lipschitz Functions Characterize the Underlying Metric Spaces Let $X, Y$ be metric spaces and $E, F$ be Banach spaces. Suppose that
both $X,Y$ are realcompact, or both $E,F$ are realcompact.
The zero set of a vector-valued function $f$ is denoted by $z(f)$.
A linear bijection $T$ between local or generalized Lipschitz vector-valued function spaces
is said to preserve zero-set containments or nonvanishing functions
if
\[z(f)\subseteq z(g)\quad\Longleftrightarrow\quad z(Tf)\subseteq z(Tg),\]
or
\[z(f) = \emptyset\quad \Longleftrightarrow\quad z(Tf)=\emptyset,\]
respectively.
Every zero-set containment preserver, and every nonvanishing function preserver when
$\dim E =\dim F\lt +\infty$, is a weighted composition operator
$(Tf)(y)=J_y(f(\tau(y)))$.
We show that the map $\tau\colon Y\to X$ is a locally (little) Lipschitz homeomorphism.
Keywords:(generalized, locally, little) Lipschitz functions, zero-set containment preservers, biseparating maps Categories:46E40, 54D60, 46E15 |
19. CMB 2013 (vol 57 pp. 546)
Compact Operators in Regular LCQ Groups We show that a regular locally compact quantum group $\mathbb{G}$ is discrete
if and only if $\mathcal{L}^{\infty}(\mathbb{G})$ contains non-zero compact operators on
$\mathcal{L}^{2}(\mathbb{G})$.
As a corollary we classify all discrete quantum groups among
regular locally compact quantum groups $\mathbb{G}$ where
$\mathcal{L}^{1}(\mathbb{G})$ has the Radon--Nikodym property.
Keywords:locally compact quantum groups, regularity, compact operators Category:46L89 |
20. CMB 2012 (vol 57 pp. 424)
A Note on Amenability of Locally Compact Quantum Groups In this short note we introduce a notion called ``quantum injectivity''
of locally compact quantum groups, and prove that it is equivalent
to amenability of the dual. Particularly, this provides a new characterization
of amenability of locally compact groups.
Keywords:amenability, conditional expectation, injectivity, locally compact quantum group, quantum injectivity Categories:20G42, 22D25, 46L89 |
21. CMB 2012 (vol 57 pp. 90)
Compact Subsets of the Glimm Space of a $C^*$-algebra If $A$ is a $\sigma$-unital $C^*$-algebra and $a$ is a strictly positive element of $A$ then for every compact subset $K$ of the complete
regularization $\mathrm{Glimm}(A)$ of $\mathrm{Prim}(A)$ there exists
$\alpha \gt 0$ such that $K\subset \{G\in \mathrm{Glimm}(A) \mid \Vert a + G\Vert \geq
\alpha\}$. This extends
a result of J. Dauns
to all $\sigma$-unital $C^*$-algebras. However, there are a $C^*$-algebra $A$
and a compact subset of $\mathrm{Glimm}(A)$ that is not contained in any set of the form $\{G\in \mathrm{Glimm}(A) \mid \Vert a + G\Vert \geq
\alpha\}$, $a\in A$ and $\alpha \gt 0$.
Keywords:primitive ideal space, complete regularization Category:46L05 |
22. CMB 2012 (vol 57 pp. 42)
Covering the Unit Sphere of Certain Banach Spaces by Sequences of Slices and Balls e prove that, given any covering of any infinite-dimensional Hilbert space $H$ by countably many closed balls, some point exists in $H$ which belongs to infinitely many balls. We do that by characterizing isomorphically polyhedral separable Banach spaces as those whose unit sphere admits a point-finite covering by the union of countably many slices of the unit ball.
Keywords:point finite coverings, slices, polyhedral spaces, Hilbert spaces Categories:46B20, 46C05, 52C17 |
23. CMB 2012 (vol 57 pp. 166)
On Minimal and Maximal $p$-operator Space Structures We show that for $p$-operator spaces, there are natural notions of minimal and maximal
structures. These are useful for dealing with tensor products.
Keywords:$p$-operator space, min space, max space Categories:46L07, 47L25, 46G10 |
24. CMB 2012 (vol 57 pp. 3)
A Short Proof of Paouris' Inequality We give a short proof of a result of G.~Paouris on
the tail behaviour of the Euclidean norm $|X|$ of an isotropic
log-concave random vector $X\in\mathbb{R}^n,$
stating that for every $t\geq 1$,
\[\mathbb{P} \big( |X|\geq ct\sqrt n\big)\leq \exp(-t\sqrt n).\]
More precisely we show that for any log-concave random vector $X$
and any $p\geq 1$,
\[(\mathbb{E}|X|^p)^{1/p}\sim \mathbb{E} |X|+\sup_{z\in
S^{n-1}}(\mathbb{E} |\langle
z,X\rangle|^p)^{1/p}.\]
Keywords:log-concave random vectors, deviation inequalities Categories:46B06, 46B09, 52A23 |
25. CMB 2012 (vol 57 pp. 37)
Character Amenability of Lipschitz Algebras Let ${\mathcal X}$ be a locally compact metric space and let
${\mathcal A}$ be any of the Lipschitz algebras
${\operatorname{Lip}_{\alpha}{\mathcal X}}$, ${\operatorname{lip}_{\alpha}{\mathcal X}}$ or
${\operatorname{lip}_{\alpha}^0{\mathcal X}}$. In this paper, we show, as a
consequence of rather more general results on Banach algebras,
that ${\mathcal A}$ is $C$-character amenable if and only if
${\mathcal X}$ is uniformly discrete.
Keywords:character amenable, character contractible, Lipschitz algebras, spectrum Categories:43A07, 46H05, 46J10 |