CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 46 ( Functional analysis )

  Expand all        Collapse all Results 1 - 25 of 178

1. CMB Online first

Gabriyelyan, S. S.
Free Locally Convex Spaces and the $k$-space Property
Let $L(X)$ be the free locally convex space over a Tychonoff space $X$. Then $L(X)$ is a $k$-space if and only if $X$ is a countable discrete space. We prove also that $L(D)$ has uncountable tightness for every uncountable discrete space $D$.

Keywords:free locally convex space, $k$-space, countable tightness
Categories:46A03, 54D50, 54A25

2. CMB Online first

Boulabiar, Karim
Characters on $C( X)$
The precise condition on a completely regular space $X$ for every character on $C(X) $ to be an evaluation at some point in $X$ is that $X$ be realcompact. Usually, this classical result is obtained relying heavily on involved (and even nonconstructive) extension arguments. This note provides a direct proof that is accessible to a large audience.

Keywords:characters, realcompact, evaluation, real-valued continuous functions
Categories:54C30, 46E25

3. CMB Online first

Chung, Jaeyoung
On an Exponential Functional Inequality and its Distributional Version
Let $G$ be a group and $\mathbb K=\mathbb C$ or $\mathbb R$. In this article, as a generalization of the result of Albert and Baker, we investigate the behavior of bounded and unbounded functions $f\colon G\to \mathbb K$ satisfying the inequality $ \Bigl|f \Bigl(\sum_{k=1}^n x_k \Bigr)-\prod_{k=1}^n f(x_k) \Bigr|\le \phi(x_2, \dots, x_n),\quad \forall\, x_1, \dots, x_n\in G, $ where $\phi\colon G^{n-1}\to [0, \infty)$. Also, as a distributional version of the above inequality we consider the stability of the functional equation \begin{equation*} u\circ S - \overbrace{u\otimes \cdots \otimes u}^{n-\text {times}}=0, \end{equation*} where $u$ is a Schwartz distribution or Gelfand hyperfunction, $\circ$ and $\otimes$ are the pullback and tensor product of distributions, respectively, and $S(x_1, \dots, x_n)=x_1+ \dots +x_n$.

Keywords:distribution, exponential functional equation, Gelfand hyperfunction, stability
Categories:46F99, 39B82

4. CMB Online first

Erzakova, Nina A.
Measures of Noncompactness in Regular Spaces
Previous results by the author on the connection between three of measures of non-compactness obtained for $L_p$, are extended to regular spaces of measurable functions. An example of advantage in some cases one of them in comparison with another is given. Geometric characteristics of regular spaces are determined. New theorems for $(k,\beta)$-boundedness of partially additive operators are proved.

Keywords:measure of non-compactness, condensing map, partially additive operator, regular space, ideal space
Categories:47H08, 46E30, 47H99, 47G10

5. CMB Online first

Ghenciu, Ioana
Limited Sets and Bibasic Sequences
Bibasic sequences are used to study relative weak compactness and relative norm compactness of limited sets.

Keywords:limited sets, $L$-sets, bibasic sequences, the Dunford-Pettis property
Categories:46B20, 46B28, 28B05

6. CMB Online first

Kamalov, F.
Property T and Amenable Transformation Group $C^*$-algebras
It is well known that a discrete group which is both amenable and has Kazhdan's Property T must be finite. In this note we generalize the above statement to the case of transformation groups. We show that if $G$ is a discrete amenable group acting on a compact Hausdorff space $X$, then the transformation group $C^*$-algebra $C^*(X, G)$ has Property T if and only if both $X$ and $G$ are finite. Our approach does not rely on the use of tracial states on $C^*(X, G)$.

Keywords:Property T, $C^*$-algebras, transformation group, amenable
Categories:46L55, 46L05

7. CMB Online first

Godefroy, G.
Uniqueness of preduals in spaces of operators
We show that if $E$ is a separable reflexive space, and $L$ is a weak-star closed linear subspace of $L(E)$ such that $L\cap K(E)$ is weak-star dense in $L$, then $L$ has a unique isometric predual. The proof relies on basic topological arguments.

Categories:46B20, 46B04

8. CMB Online first

Brannan, Michael
Strong Asymptotic Freeness for Free Orthogonal Quantum Groups
It is known that the normalized standard generators of the free orthogonal quantum group $O_N^+$ converge in distribution to a free semicircular system as $N \to \infty$. In this note, we substantially improve this convergence result by proving that, in addition to distributional convergence, the operator norm of any non-commutative polynomial in the normalized standard generators of $O_N^+$ converges as $N \to \infty$ to the operator norm of the corresponding non-commutative polynomial in a standard free semicircular system. Analogous strong convergence results are obtained for the generators of free unitary quantum groups. As applications of these results, we obtain a matrix-coefficient version of our strong convergence theorem, and we recover a well known $L^2$-$L^\infty$ norm equivalence for non-commutative polynomials in free semicircular systems.

Keywords:quantum groups, free probability, asymptotic free independence, strong convergence, property of rapid decay
Categories:46L54, 20G42, 46L65

9. CMB Online first

Swanepoel, Konrad J.
Equilateral sets and a Schütte Theorem for the $4$-norm
A well-known theorem of Schütte (1963) gives a sharp lower bound for the ratio of the maximum and minimum distances between $n+2$ points in $n$-dimensional Euclidean space. In this note we adapt Bárány's elegant proof (1994) of this theorem to the space $\ell_4^n$. This gives a new proof that the largest cardinality of an equilateral set in $\ell_4^n$ is $n+1$, and gives a constructive bound for an interval $(4-\varepsilon_n,4+\varepsilon_n)$ of values of $p$ close to $4$ for which it is known that the largest cardinality of an equilateral set in $\ell_p^n$ is $n+1$.

Categories:46B20, 52A21, 52C17

10. CMB Online first

Bownik, Marcin; Jasper, John
Constructive Proof of Carpenter's Theorem
We give a constructive proof of Carpenter's Theorem due to Kadison. Unlike the original proof our approach also yields the real case of this theorem.

Keywords:diagonals of projections, the Schur-Horn theorem, the Pythagorean theorem, the Carpenter theorem, spectral theory
Categories:42C15, 47B15, 46C05

11. CMB Online first

Lu, Yufeng; Yang, Dachun; Yuan, Wen
Interpolation of Morrey Spaces on Metric Measure Spaces
In this article, via the classical complex interpolation method and some interpolation methods traced to Gagliardo, the authors obtain an interpolation theorem for Morrey spaces on quasi-metric measure spaces, which generalizes some known results on ${\mathbb R}^n$.

Keywords:complex interpolation, Morrey space, Gagliardo interpolation, Calderón product, quasi-metric measure space
Categories:46B70, 46E30

12. CMB 2013 (vol 57 pp. 364)

Li, Lei; Wang, Ya-Shu
How Lipschitz Functions Characterize the Underlying Metric Spaces
Let $X, Y$ be metric spaces and $E, F$ be Banach spaces. Suppose that both $X,Y$ are realcompact, or both $E,F$ are realcompact. The zero set of a vector-valued function $f$ is denoted by $z(f)$. A linear bijection $T$ between local or generalized Lipschitz vector-valued function spaces is said to preserve zero-set containments or nonvanishing functions if \[z(f)\subseteq z(g)\quad\Longleftrightarrow\quad z(Tf)\subseteq z(Tg),\] or \[z(f) = \emptyset\quad \Longleftrightarrow\quad z(Tf)=\emptyset,\] respectively. Every zero-set containment preserver, and every nonvanishing function preserver when $\dim E =\dim F\lt +\infty$, is a weighted composition operator $(Tf)(y)=J_y(f(\tau(y)))$. We show that the map $\tau\colon Y\to X$ is a locally (little) Lipschitz homeomorphism.

Keywords:(generalized, locally, little) Lipschitz functions, zero-set containment preservers, biseparating maps
Categories:46E40, 54D60, 46E15

13. CMB Online first

Kalantar, Mehrdad
Compact Operators in Regular LCQ Groups
We show that a regular locally compact quantum group $\mathbb{G}$ is discrete if and only if $\mathcal{L}^{\infty}(\mathbb{G})$ contains non-zero compact operators on $\mathcal{L}^{2}(\mathbb{G})$. As a corollary we classify all discrete quantum groups among regular locally compact quantum groups $\mathbb{G}$ where $\mathcal{L}^{1}(\mathbb{G})$ has the Radon--Nikodym property.

Keywords:locally compact quantum groups, regularity, compact operators
Category:46L89

14. CMB 2012 (vol 57 pp. 424)

Sołtan, Piotr M.; Viselter, Ami
A Note on Amenability of Locally Compact Quantum Groups
In this short note we introduce a notion called ``quantum injectivity'' of locally compact quantum groups, and prove that it is equivalent to amenability of the dual. Particularly, this provides a new characterization of amenability of locally compact groups.

Keywords:amenability, conditional expectation, injectivity, locally compact quantum group, quantum injectivity
Categories:20G42, 22D25, 46L89

15. CMB 2012 (vol 57 pp. 90)

Lazar, Aldo J.
Compact Subsets of the Glimm Space of a $C^*$-algebra
If $A$ is a $\sigma$-unital $C^*$-algebra and $a$ is a strictly positive element of $A$ then for every compact subset $K$ of the complete regularization $\mathrm{Glimm}(A)$ of $\mathrm{Prim}(A)$ there exists $\alpha \gt 0$ such that $K\subset \{G\in \mathrm{Glimm}(A) \mid \Vert a + G\Vert \geq \alpha\}$. This extends a result of J. Dauns to all $\sigma$-unital $C^*$-algebras. However, there are a $C^*$-algebra $A$ and a compact subset of $\mathrm{Glimm}(A)$ that is not contained in any set of the form $\{G\in \mathrm{Glimm}(A) \mid \Vert a + G\Vert \geq \alpha\}$, $a\in A$ and $\alpha \gt 0$.

Keywords:primitive ideal space, complete regularization
Category:46L05

16. CMB 2012 (vol 57 pp. 42)

Fonf, Vladimir P.; Zanco, Clemente
Covering the Unit Sphere of Certain Banach Spaces by Sequences of Slices and Balls
e prove that, given any covering of any infinite-dimensional Hilbert space $H$ by countably many closed balls, some point exists in $H$ which belongs to infinitely many balls. We do that by characterizing isomorphically polyhedral separable Banach spaces as those whose unit sphere admits a point-finite covering by the union of countably many slices of the unit ball.

Keywords:point finite coverings, slices, polyhedral spaces, Hilbert spaces
Categories:46B20, 46C05, 52C17

17. CMB 2012 (vol 57 pp. 166)

Öztop, Serap; Spronk, Nico
On Minimal and Maximal $p$-operator Space Structures
We show that for $p$-operator spaces, there are natural notions of minimal and maximal structures. These are useful for dealing with tensor products.

Keywords:$p$-operator space, min space, max space
Categories:46L07, 47L25, 46G10

18. CMB 2012 (vol 57 pp. 3)

Adamczak, Radosław; Latała, Rafał; Litvak, Alexander E.; Oleszkiewicz, Krzysztof; Pajor, Alain; Tomczak-Jaegermann, Nicole
A Short Proof of Paouris' Inequality
We give a short proof of a result of G.~Paouris on the tail behaviour of the Euclidean norm $|X|$ of an isotropic log-concave random vector $X\in\mathbb{R}^n,$ stating that for every $t\geq 1$, \[\mathbb{P} \big( |X|\geq ct\sqrt n\big)\leq \exp(-t\sqrt n).\] More precisely we show that for any log-concave random vector $X$ and any $p\geq 1$, \[(\mathbb{E}|X|^p)^{1/p}\sim \mathbb{E} |X|+\sup_{z\in S^{n-1}}(\mathbb{E} |\langle z,X\rangle|^p)^{1/p}.\]

Keywords:log-concave random vectors, deviation inequalities
Categories:46B06, 46B09, 52A23

19. CMB 2012 (vol 57 pp. 37)

Dashti, Mahshid; Nasr-Isfahani, Rasoul; Renani, Sima Soltani
Character Amenability of Lipschitz Algebras
Let ${\mathcal X}$ be a locally compact metric space and let ${\mathcal A}$ be any of the Lipschitz algebras ${\operatorname{Lip}_{\alpha}{\mathcal X}}$, ${\operatorname{lip}_{\alpha}{\mathcal X}}$ or ${\operatorname{lip}_{\alpha}^0{\mathcal X}}$. In this paper, we show, as a consequence of rather more general results on Banach algebras, that ${\mathcal A}$ is $C$-character amenable if and only if ${\mathcal X}$ is uniformly discrete.

Keywords:character amenable, character contractible, Lipschitz algebras, spectrum
Categories:43A07, 46H05, 46J10

20. CMB 2012 (vol 56 pp. 551)

Handelman, David
Real Dimension Groups
Dimension groups (not countable) that are also real ordered vector spaces can be obtained as direct limits (over directed sets) of simplicial real vector spaces (finite dimensional vector spaces with the coordinatewise ordering), but the directed set is not as interesting as one would like, i.e., it is not true that a countable-dimensional real vector space that has interpolation can be represented as such a direct limit over the a countable directed set. It turns out this is the case when the group is additionally simple, and it is shown that the latter have an ordered tensor product decomposition. In the Appendix, we provide a huge class of polynomial rings that, with a pointwise ordering, are shown to satisfy interpolation, extending a result outlined by Fuchs.

Keywords:dimension group, simplicial vector space, direct limit, Riesz interpolation
Categories:46A40, 06F20, 13J25, 19K14

21. CMB 2012 (vol 56 pp. 870)

Wei, Changguo
Note on Kasparov Product of $C^*$-algebra Extensions
Using the Dadarlat isomorphism, we give a characterization for the Kasparov product of $C^*$-algebra extensions. A certain relation between $KK(A, \mathcal q(B))$ and $KK(A, \mathcal q(\mathcal k B))$ is also considered when $B$ is not stable and it is proved that $KK(A, \mathcal q(B))$ and $KK(A, \mathcal q(\mathcal k B))$ are not isomorphic in general.

Keywords:extension, Kasparov product, $KK$-group
Category:46L80

22. CMB 2012 (vol 56 pp. 503)

Bu, Qingying
Weak Sequential Completeness of $\mathcal K(X,Y)$
For Banach spaces $X$ and $Y$, we show that if $X^\ast$ and $Y$ are weakly sequentially complete and every weakly compact operator from $X$ to $Y$ is compact then the space of all compact operators from $X$ to $Y$ is weakly sequentially complete. The converse is also true if, in addition, either $X^\ast$ or $Y$ has the bounded compact approximation property.

Keywords:weak sequential completeness, reflexivity, compact operator space
Categories:46B25, 46B28

23. CMB 2012 (vol 56 pp. 534)

Filali, M.; Monfared, M. Sangani
A Cohomological Property of $\pi$-invariant Elements
Let $A$ be a Banach algebra and $\pi \colon A \longrightarrow \mathscr L(H)$ be a continuous representation of $A$ on a separable Hilbert space $H$ with $\dim H =\frak m$. Let $\pi_{ij}$ be the coordinate functions of $\pi$ with respect to an orthonormal basis and suppose that for each $1\le j \le \frak m$, $C_j=\sum_{i=1}^{\frak m} \|\pi_{ij}\|_{A^*}\lt \infty$ and $\sup_j C_j\lt \infty$. Under these conditions, we call an element $\overline\Phi \in l^\infty (\frak m , A^{**})$ left $\pi$-invariant if $a\cdot \overline\Phi ={}^t\pi (a) \overline\Phi$ for all $a\in A$. In this paper we prove a link between the existence of left $\pi$-invariant elements and the vanishing of certain Hochschild cohomology groups of $A$. Our results extend an earlier result by Lau on $F$-algebras and recent results of Kaniuth-Lau-Pym and the second named author in the special case that $\pi \colon A \longrightarrow \mathbf C$ is a non-zero character on $A$.

Keywords:Banach algebras, $\pi$-invariance, derivations, representations
Categories:46H15, 46H25, 13N15

24. CMB 2012 (vol 56 pp. 630)

Sundar, S.
Inverse Semigroups and Sheu's Groupoid for the Odd Dimensional Quantum Spheres
In this paper, we give a different proof of the fact that the odd dimensional quantum spheres are groupoid $C^{*}$-algebras. We show that the $C^{*}$-algebra $C(S_{q}^{2\ell+1})$ is generated by an inverse semigroup $T$ of partial isometries. We show that the groupoid $\mathcal{G}_{tight}$ associated with the inverse semigroup $T$ by Exel is exactly the same as the groupoid considered by Sheu.

Keywords:inverse semigroups, groupoids, odd dimensional quantum spheres
Categories:46L99, 20M18

25. CMB 2011 (vol 56 pp. 337)

Fan, Qingzhai
Certain Properties of $K_0$-monoids Preserved by Tracial Approximation
We show that the following $K_0$-monoid properties of $C^*$-algebras in the class $\Omega$ are inherited by simple unital $C^*$-algebras in the class $TA\Omega$: (1) weak comparability, (2) strictly unperforated, (3) strictly cancellative.

Keywords:$C^*$-algebra, tracial approximation, $K_0$-monoid
Categories:46L05, 46L80, 46L35
Page
   1 2 3 4 ... 8    

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/