Expand all Collapse all | Results 1 - 2 of 2 |
1. CMB Online first
Periodic Solutions of Almost Linear Volterra Integro-dynamic Equation on Periodic Time Scales Using Krasnoselskii's fixed point theorem, we deduce
the existence of periodic solutions of nonlinear system of integro-dynamic
equations on periodic time scales. These equations are
studied under a set of assumptions on the functions involved
in the
equations. The equations will be called almost linear when these
assumptions hold. The results of this papers are new for the
continuous and discrete time scales.
Keywords:Volterra integro-dynamic equation, time scales, Krasnoselsii's fixed point theorem, periodic solution Categories:45J05, 45D05 |
2. CMB 2011 (vol 56 pp. 80)
Three Fixed Point Theorems: Periodic Solutions of a Volterra Type Integral Equation with Infinite Heredity |
Three Fixed Point Theorems: Periodic Solutions of a Volterra Type Integral Equation with Infinite Heredity In this paper we study the existence of periodic solutions of a Volterra type integral equation with infinite heredity. Banach fixed point theorem, Krasnosel'skii's fixed point theorem, and a combination of Krasnosel'skii's
and Schaefer's fixed point theorems are employed in the analysis.
The combination theorem of Krasnosel'skii and Schaefer requires an a priori bound on all solutions.
We employ Liapunov's direct method to obtain such an a priori bound.
In the process, we compare these theorems in terms of assumptions and outcomes.
Keywords:Volterra integral equation, periodic solutions, Liapunov's method, Krasnosel'skii's fixed point theorem, Schaefer's fixed point theorem Categories:45D05, 45J05 |