1. CMB Online first
 Silberman, Lior

Quantum unique ergodicity on locally symmetric spaces: the degenerate lift
Given a measure $\bar\mu_\infty$ on a locally symmetric space $Y=\Gamma\backslash
G/K$,
obtained as a weak{*} limit of probability measures associated
to
eigenfunctions of the ring of invariant differential operators,
we
construct a measure $\bar\mu_\infty$ on the homogeneous space $X=\Gamma\backslash
G$
which lifts $\bar\mu_\infty$ and which is invariant by a connected subgroup
$A_{1}\subset A$ of positive dimension, where $G=NAK$ is an Iwasawa
decomposition. If the functions are, in addition, eigenfunctions
of
the Hecke operators, then $\bar\mu_\infty$ is also the limit of measures
associated
to Hecke eigenfunctions on $X$. This generalizes results of the
author
with A. Venkatesh in the case where the spectral parameters
stay
away from the walls of the Weyl chamber.
Keywords:quantum unique ergodicity, microlocal lift, spherical dual Categories:22E50, 43A85 

2. CMB 2011 (vol 54 pp. 663)
 Haas, Ruth; G. Helminck, Aloysius

Admissible Sequences for Twisted Involutions in Weyl Groups
Let $W$ be a Weyl group, $\Sigma$ a set of simple reflections in $W$
related to a basis $\Delta$ for the root system $\Phi$ associated with
$W$ and $\theta$ an involution such that $\theta(\Delta) = \Delta$. We
show that the set of $\theta$twisted involutions in $W$,
$\mathcal{I}_{\theta} = \{w\in W \mid \theta(w) = w^{1}\}$ is in one
to one correspondence with the set of regular involutions
$\mathcal{I}_{\operatorname{Id}}$. The elements of $\mathcal{I}_{\theta}$ are
characterized by sequences in $\Sigma$ which induce an ordering called
the RichardsonSpringer Poset. In particular, for $\Phi$ irreducible,
the ascending RichardsonSpringer Poset of $\mathcal{I}_{\theta}$,
for nontrivial $\theta$ is identical to the descending
RichardsonSpringer Poset of $\mathcal{I}_{\operatorname{Id}}$.
Categories:20G15, 20G20, 22E15, 22E46, 43A85 

3. CMB 2007 (vol 50 pp. 291)
4. CMB 2004 (vol 47 pp. 389)
5. CMB 1999 (vol 42 pp. 169)
 Ding, Hongming

Heat Kernels of Lorentz Cones
We obtain an explicit formula for heat kernels of Lorentz cones, a
family of classical symmetric cones. By this formula, the heat
kernel of a Lorentz cone is expressed by a function of time $t$ and
two eigenvalues of an element in the cone. We obtain also upper and
lower bounds for the heat kernels of Lorentz cones.
Keywords:Lorentz cone, symmetric cone, Jordan algebra, heat kernel, heat equation, LaplaceBeltrami operator, eigenvalues Categories:35K05, 43A85, 35K15, 80A20 
