CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 43A22 ( Homomorphisms and multipliers of function spaces on groups, semigroups, etc. )

  Expand all        Collapse all Results 1 - 4 of 4

1. CMB 2011 (vol 54 pp. 654)

Forrest, Brian E.; Runde, Volker
Norm One Idempotent $cb$-Multipliers with Applications to the Fourier Algebra in the $cb$-Multiplier Norm
For a locally compact group $G$, let $A(G)$ be its Fourier algebra, let $M_{cb}A(G)$ denote the completely bounded multipliers of $A(G)$, and let $A_{\mathit{Mcb}}(G)$ stand for the closure of $A(G)$ in $M_{cb}A(G)$. We characterize the norm one idempotents in $M_{cb}A(G)$: the indicator function of a set $E \subset G$ is a norm one idempotent in $M_{cb}A(G)$ if and only if $E$ is a coset of an open subgroup of $G$. As applications, we describe the closed ideals of $A_{\mathit{Mcb}}(G)$ with an approximate identity bounded by $1$, and we characterize those $G$ for which $A_{\mathit{Mcb}}(G)$ is $1$-amenable in the sense of B. E. Johnson. (We can even slightly relax the norm bounds.)

Keywords:amenability, bounded approximate identity, $cb$-multiplier norm, Fourier algebra, norm one idempotent
Categories:43A22, 20E05, 43A30, 46J10, 46J40, 46L07, 47L25

2. CMB 2010 (vol 54 pp. 207)

Chen, Jiecheng; Fan, Dashan
A Bilinear Fractional Integral on Compact Lie Groups
As an analog of a well-known theorem on the bilinear fractional integral on $\mathbb{R}^{n}$ by Kenig and Stein, we establish the similar boundedness property for a bilinear fractional integral on a compact Lie group. Our result is also a generalization of our recent theorem about the bilinear fractional integral on torus.

Keywords:bilinear fractional integral, $L^p$ spaces, Heat kernel
Categories:43A22, 43A32, 43B25

3. CMB 2010 (vol 53 pp. 447)

Choi, Yemon
Injective Convolution Operators on l(Γ) are Surjective
Let $\Gamma$ be a discrete group and let $f \in \ell^{1}(\Gamma)$. We observe that if the natural convolution operator $\rho_f: \ell^{\infty}(\Gamma)\to \ell^{\infty}(\Gamma)$ is injective, then $f$ is invertible in $\ell^{1}(\Gamma)$. Our proof simplifies and generalizes calculations in a preprint of Deninger and Schmidt by appealing to the direct finiteness of the algebra $\ell^{1}(\Gamma)$. We give simple examples to show that in general one cannot replace $\ell^{\infty}$ with $\ell^{p}$, $1\leq p< \infty$, nor with $L^{\infty}(G)$ for nondiscrete $G$. Finally, we consider the problem of extending the main result to the case of weighted convolution operators on $\Gamma$, and give some partial results.

Categories:43A20, 46L05, 43A22

4. CMB 1997 (vol 40 pp. 183)

Kepert, Andrew G.
The range of group algebra homomorphisms
A characterisation of the range of a homomorphism between two commutative group algebras is presented which implies, among other things, that this range is closed. The work relies mainly on the characterisation of such homomorphisms achieved by P.~J.~Cohen.

Categories:43A22, 22B10, 46J99

© Canadian Mathematical Society, 2014 : https://cms.math.ca/