Expand all Collapse all  Results 1  7 of 7 
1. CMB Online first
Approximate amenability of Segal algebras II We prove that every proper Segal algebra of a SIN group is not
approximately amenable.
Keywords:Segal algebras, approximate amenability, SIN groups, commutative Banach algebras Categories:46H20, 43A20 
2. CMB 2013 (vol 57 pp. 449)
ZLamenability Constants of Finite Groups with Two Character Degrees We calculate the exact amenability constant of the centre of
$\ell^1(G)$ when $G$ is one of the following classes of finite group:
dihedral; extraspecial; or Frobenius with abelian complement and
kernel. This is done using a formula which applies to all finite
groups with two character degrees. In passing, we answer in the
negative a question raised in work of the third author with Azimifard
and Spronk (J. Funct. Anal. 2009).
Keywords:center of group algebras, characters, character degrees, amenability constant, Frobenius group, extraspecial groups Categories:43A20, 20C15 
3. CMB 2010 (vol 53 pp. 447)
Injective Convolution Operators on l^{∞}(Γ) are Surjective Let $\Gamma$ be a discrete group and let $f \in \ell^{1}(\Gamma)$. We observe that if the natural convolution operator $\rho_f: \ell^{\infty}(\Gamma)\to \ell^{\infty}(\Gamma)$ is injective, then $f$ is invertible in $\ell^{1}(\Gamma)$. Our proof simplifies and generalizes calculations in a preprint of Deninger and Schmidt by appealing to the direct finiteness of the algebra $\ell^{1}(\Gamma)$. We give simple examples to show that in general one cannot replace $\ell^{\infty}$ with $\ell^{p}$, $1\leq p< \infty$, nor with $L^{\infty}(G)$ for nondiscrete $G$. Finally, we consider the problem of extending the main result to the case of weighted convolution operators on $\Gamma$, and give some partial results.
Categories:43A20, 46L05, 43A22 
4. CMB 2008 (vol 51 pp. 60)
F{\o}lner Nets for Semidirect Products of Amenable Groups For unimodular semidirect products of locally compact amenable
groups $N$ and $H$, we show that one can always construct a
F{\o}lner net of the form $(A_\alpha \times B_\beta)$ for $G$, where
$(A_\alpha)$ is a strong form of F{\o}lner net for $N$ and
$(B_\beta)$ is any F{\o}lner net for $H$. Applications to the
Heisenberg and Euclidean motion groups are provided.
Categories:22D05, 43A07, 22D15, 43A20 
5. CMB 2007 (vol 50 pp. 56)
Simplicial Cohomology of Some Semigroup Algebras In this paper, we investigate the higher simplicial cohomology
groups of the convolution algebra $\ell^1(S)$ for various semigroups
$S$. The classes of semigroups considered are semilattices, Clifford
semigroups, regular Rees semigroups and the additive semigroups of
integers greater than $a$ for some integer $a$. Our results are of
two types: in some cases, we show that some cohomology groups are $0$,
while in some other cases, we show that some cohomology groups are
Banach spaces.
Keywords:simplicial cohomology, semigroup algebra Category:43A20 
6. CMB 2004 (vol 47 pp. 445)
Biprojectivity and Biflatness for Convolution Algebras of Nuclear Operators For a locally compact group $G$, the convolution product on
the space $\nN(L^p(G))$ of nuclear operators was defined by Neufang
\cite{Neuf_PhD}. We study homological properties of the convolution algebra
$\nN(L^p(G))$ and relate them to some properties of the group $G$,
such as compactness, finiteness, discreteness, and amenability.
Categories:46M10, 46H25, 43A20, 16E65 
7. CMB 1997 (vol 40 pp. 133)
Derivations from totally ordered semigroup algebras into their duals For a wellbehaved measure $\mu$, on a locally compact
totally ordered set $X$, with continuous part $\mu_c$, we make
$L^p(X,\mu_c)$
into a commutative Banach bimodule over the totally ordered
semigroup algebra
$L^p(X,\mu)$, in such a way that the natural surjection from the algebra
to the module is a bounded derivation. This gives rise to bounded
derivations from $L^p(X,\mu)$
into its dual module and in particular shows that if $\mu_c$ is not
identically zero then $L^p(X,\mu)$ is not weakly
amenable. We show that all bounded derivations from $L^1(X,\mu)$
into its dual module arise in this way and also describe all bounded
derivations from
$L^p(X,\mu)$ into its dual for $1
