Expand all Collapse all | Results 1 - 3 of 3 |
1. CMB Online first
A Fixed Point Theorem and the Existence of a Haar Measure for Hypergroups Satisfying Conditions Related to Amenability |
A Fixed Point Theorem and the Existence of a Haar Measure for Hypergroups Satisfying Conditions Related to Amenability In this paper we present a fixed point property for amenable
hypergroups which is analogous to Rickert's fixed point theorem
for semigroups. It equates the existence of a left invariant
mean on the space of weakly right uniformly continuous functions
to the existence of a fixed point for any action of the hypergroup.
Using this fixed point property, a certain class of hypergroups
are shown to have a left Haar measure.
Keywords:invariant measure, Haar measure, hypergroup, amenability, function translations Categories:43A62, 43A05, 43A07 |
2. CMB 2004 (vol 47 pp. 215)
Countable Amenable Identity Excluding Groups A discrete group $G$ is called \emph{identity excluding\/}
if the only irreducible
unitary representation of $G$ which weakly contains the $1$-dimensional identity
representation is the $1$-dimensional identity representation itself. Given a
unitary representation $\pi$ of $G$ and a probability measure $\mu$ on $G$, let
$P_\mu$ denote the $\mu$-average $\int\pi(g) \mu(dg)$. The goal of this article
is twofold: (1)~to study the asymptotic behaviour of the powers $P_\mu^n$, and
(2)~to provide a characterization of countable amenable identity excluding groups.
We prove that for every adapted probability measure $\mu$ on an identity excluding
group and every unitary representation $\pi$ there exists and orthogonal projection
$E_\mu$ onto a $\pi$-invariant subspace such that $s$-$\lim_{n\to\infty}\bigl(P_\mu^n-
\pi(a)^nE_\mu\bigr)=0$ for every $a\in\supp\mu$. This also remains true for suitably
defined identity excluding locally compact groups. We show that the class of countable
amenable identity excluding groups coincides with the class of $\FC$-hypercentral
groups; in the finitely generated case this is precisely the class of groups of
polynomial growth. We also establish that every adapted random walk on a countable
amenable identity excluding group is ergodic.
Categories:22D10, 22D40, 43A05, 47A35, 60B15, 60J50 |
3. CMB 2002 (vol 45 pp. 483)
Diffraction of Weighted Lattice Subsets A Dirac comb of point measures in Euclidean space with bounded
complex weights that is supported on a lattice $\varGamma$ inherits
certain general properties from the lattice structure. In
particular, its autocorrelation admits a factorization into a
continuous function and the uniform lattice Dirac comb, and its
diffraction measure is periodic, with the dual lattice
$\varGamma^*$ as lattice of periods. This statement remains true
in the setting of a locally compact Abelian group whose topology
has a countable base.
Keywords:diffraction, Dirac combs, lattice subsets, homometric sets Categories:52C07, 43A25, 52C23, 43A05 |