CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 43A05 ( Measures on groups and semigroups, etc. )

  Expand all        Collapse all Results 1 - 2 of 2

1. CMB 2004 (vol 47 pp. 215)

Jaworski, Wojciech
Countable Amenable Identity Excluding Groups
A discrete group $G$ is called \emph{identity excluding\/} if the only irreducible unitary representation of $G$ which weakly contains the $1$-dimensional identity representation is the $1$-dimensional identity representation itself. Given a unitary representation $\pi$ of $G$ and a probability measure $\mu$ on $G$, let $P_\mu$ denote the $\mu$-average $\int\pi(g) \mu(dg)$. The goal of this article is twofold: (1)~to study the asymptotic behaviour of the powers $P_\mu^n$, and (2)~to provide a characterization of countable amenable identity excluding groups. We prove that for every adapted probability measure $\mu$ on an identity excluding group and every unitary representation $\pi$ there exists and orthogonal projection $E_\mu$ onto a $\pi$-invariant subspace such that $s$-$\lim_{n\to\infty}\bigl(P_\mu^n- \pi(a)^nE_\mu\bigr)=0$ for every $a\in\supp\mu$. This also remains true for suitably defined identity excluding locally compact groups. We show that the class of countable amenable identity excluding groups coincides with the class of $\FC$-hypercentral groups; in the finitely generated case this is precisely the class of groups of polynomial growth. We also establish that every adapted random walk on a countable amenable identity excluding group is ergodic.

Categories:22D10, 22D40, 43A05, 47A35, 60B15, 60J50

2. CMB 2002 (vol 45 pp. 483)

Baake, Michael
Diffraction of Weighted Lattice Subsets
A Dirac comb of point measures in Euclidean space with bounded complex weights that is supported on a lattice $\varGamma$ inherits certain general properties from the lattice structure. In particular, its autocorrelation admits a factorization into a continuous function and the uniform lattice Dirac comb, and its diffraction measure is periodic, with the dual lattice $\varGamma^*$ as lattice of periods. This statement remains true in the setting of a locally compact Abelian group whose topology has a countable base.

Keywords:diffraction, Dirac combs, lattice subsets, homometric sets
Categories:52C07, 43A25, 52C23, 43A05

© Canadian Mathematical Society, 2014 : https://cms.math.ca/