1. CMB 2013 (vol 57 pp. 254)
 Christensen, Ole; Kim, Hong Oh; Kim, Rae Young

On Parseval Wavelet Frames with Two or Three Generators via the Unitary Extension Principle
The unitary extension principle (UEP) by Ron and Shen yields a
sufficient condition for the construction of Parseval wavelet frames with
multiple generators. In this paper we characterize the UEPtype wavelet systems that
can be extended to a Parseval wavelet frame by adding just one UEPtype wavelet
system. We derive a condition that is necessary for the extension of a UEPtype
wavelet system to any Parseval wavelet frame with any number of generators, and
prove that this condition is also sufficient to ensure that an extension
with just two generators is possible.
Keywords:Bessel sequences, frames, extension of wavelet Bessel system to tight frame, wavelet systems, unitary extension principle Categories:42C15, 42C40 

2. CMB 2013 (vol 56 pp. 729)
 Currey, B.; Mayeli, A.

The Orthonormal Dilation Property for Abstract Parseval Wavelet Frames
In this work we introduce a class of discrete groups containing
subgroups of abstract translations and dilations, respectively. A
variety of wavelet systems can appear as $\pi(\Gamma)\psi$, where $\pi$ is
a unitary representation of a wavelet group and $\Gamma$ is the abstract
pseudolattice $\Gamma$. We prove a condition in order that a Parseval
frame $\pi(\Gamma)\psi$ can be dilated to an orthonormal basis of the
form $\tau(\Gamma)\Psi$ where $\tau$ is a superrepresentation of
$\pi$. For a subclass of groups that includes the case where the
translation subgroup is Heisenberg, we show that this condition
always holds, and we cite familiar examples as applications.
Keywords:frame, dilation, wavelet, BaumslagSolitar group, shearlet Categories:43A65, 42C40, 42C15 

3. CMB 2013 (vol 56 pp. 745)
 Fu, Xiaoye; Gabardo, JeanPierre

Dimension Functions of SelfAffine Scaling Sets
In this paper, the dimension function of a selfaffine generalized scaling set associated with an $n\times n$ integral expansive dilation $A$ is studied. More specifically, we consider the dimension function of an $A$dilation generalized scaling set $K$ assuming that $K$ is a selfaffine tile satisfying $BK = (K+d_1) \cup (K+d_2)$, where $B=A^t$, $A$ is an $n\times n$ integral expansive matrix with $\lvert \det A\rvert=2$, and $d_1,d_2\in\mathbb{R}^n$. We show that the dimension function of $K$ must be constant if either $n=1$ or $2$ or one of the digits is $0$, and that it is bounded by $2\lvert K\rvert$ for any $n$.
Keywords:scaling set, selfaffine tile, orthonormal multiwavelet, dimension function Category:42C40 

4. CMB 2011 (vol 55 pp. 424)
 Yang, Jianbin; Li, Song

Convergence Rates of Cascade Algorithms with Infinitely Supported Masks
We investigate the solutions of refinement equations of the form
$$
\phi(x)=\sum_{\alpha\in\mathbb
Z^s}a(\alpha)\:\phi(Mx\alpha),
$$ where the function $\phi$
is in $L_p(\mathbb R^s)$$(1\le p\le\infty)$, $a$ is an infinitely
supported sequence on $\mathbb Z^s$ called a refinement mask, and
$M$ is an $s\times s$ integer matrix such that
$\lim_{n\to\infty}M^{n}=0$. Associated with the mask $a$ and $M$ is
a linear operator $Q_{a,M}$ defined on $L_p(\mathbb R^s)$ by
$Q_{a,M} \phi_0:=\sum_{\alpha\in\mathbb
Z^s}a(\alpha)\phi_0(M\cdot\alpha)$. Main results of this paper are
related to the convergence rates of $(Q_{a,M}^n
\phi_0)_{n=1,2,\dots}$ in $L_p(\mathbb R^s)$ with mask $a$ being
infinitely supported. It is proved that under some appropriate
conditions on the initial function $\phi_0$, $Q_{a,M}^n \phi_0$
converges in $L_p(\mathbb R^s)$ with an exponential rate.
Keywords:refinement equations, infinitely supported mask, cascade algorithms, rates of convergence Categories:39B12, 41A25, 42C40 

5. CMB 2009 (vol 53 pp. 133)