Expand all Collapse all  Results 1  25 of 30 
1. CMB Online first
Restriction Operators Acting on Radial Functions on Vector Spaces Over Finite Fields We study $L^pL^r$ restriction estimates for
algebraic varieties $V$ in the case when restriction operators act on
radial functions in the finite field setting.
We show that if the varieties $V$ lie in odd dimensional vector
spaces over finite fields, then the conjectured restriction estimates
are possible for all radial test functions.
In addition, assuming that the varieties $V$ are defined in even
dimensional spaces and have few intersection points with the sphere
of zero radius, we also obtain the conjectured exponents for all
radial test functions.
Keywords:finite fields, radial functions, restriction operators Categories:42B05, 43A32, 43A15 
2. CMB 2011 (vol 56 pp. 326)
Restricting Fourier Transforms of Measures to Curves in $\mathbb R^2$ We establish estimates for restrictions to certain curves in $\mathbb R^2$ of the Fourier transforms
of some fractal measures.
Keywords:Fourier transforms of fractal measures, Fourier restriction Categories:42B10, 28A12 
3. CMB 2011 (vol 56 pp. 3)
Semiclassical Limits of Eigenfunctions on Flat $n$Dimensional Tori We provide a proof of a conjecture by Jakobson, Nadirashvili, and
Toth stating
that on an $n$dimensional flat torus $\mathbb T^{n}$, and the Fourier transform
of squares of the eigenfunctions $\varphi_\lambda^2$ of the Laplacian have
uniform $l^n$ bounds that do not depend on the eigenvalue $\lambda$. The proof
is a generalization of an argument by Jakobson, et al. for the
lower dimensional cases. These results imply uniform bounds for semiclassical
limits on $\mathbb T^{n+2}$. We also prove a geometric lemma that bounds the number of
codimensionone simplices satisfying a certain restriction on an
$n$dimensional sphere $S^n(\lambda)$ of radius $\sqrt{\lambda}$, and we use it in
the proof.
Keywords:semiclassical limits, eigenfunctions of Laplacian on a torus, quantum limits Categories:58G25, 81Q50, 35P20, 42B05 
4. CMB 2011 (vol 55 pp. 646)
Marcinkiewicz Commutators with Lipschitz Functions in Nonhomogeneous Spaces Under the assumption that $\mu$ is a nondoubling
measure, we study certain commutators generated by the
Lipschitz function and the Marcinkiewicz integral whose kernel
satisfies a HÃ¶rmandertype condition. We establish the boundedness
of these commutators on the Lebesgue spaces, Lipschitz spaces, and
Hardy spaces. Our results are extensions of known theorems in the
doubling case.
Keywords:non doubling measure, Marcinkiewicz integral, commutator, ${\rm Lip}_{\beta}(\mu)$, $H^1(\mu)$ Categories:42B25, 47B47, 42B20, 47A30 
5. CMB 2011 (vol 55 pp. 555)
Weighted $L^p$ Boundedness of Pseudodifferential Operators and Applications In this paper we prove weighted norm inequalities with weights in
the $A_p$ classes, for pseudodifferential operators with symbols in
the class ${S^{n(\rho 1)}_{\rho, \delta}}$ that fall outside the
scope of CalderÃ³nZygmund theory. This is accomplished by
controlling the sharp function of the pseudodifferential operator by
HardyLittlewood type maximal functions. Our weighted norm
inequalities also yield $L^{p}$ boundedness of commutators of
functions of bounded mean oscillation with a wide class of operators
in $\mathrm{OP}S^{m}_{\rho, \delta}$.
Keywords:weighted norm inequality, pseudodifferential operator, commutator estimates Categories:42B20, 42B25, 35S05, 47G30 
6. CMB 2011 (vol 55 pp. 708)
Improved Range in the Return Times Theorem We prove that the Return Times Theorem holds true for pairs of $L^pL^q$ functions,
whenever $\frac{1}{p}+\frac{1}{q}<\frac{3}{2}$.
Keywords:Return Times Theorem, maximal multiplier, maximal inequality Categories:42B25, 37A45 
7. CMB 2011 (vol 55 pp. 303)
Atomic Decomposition and Boundedness of Operators on Weighted Hardy Spaces In this article, we establish a new atomic decomposition for $f\in L^2_w\cap H^p_w$,
where the decomposition converges in $L^2_w$norm rather than in the distribution sense.
As applications of this decomposition, assuming that $T$ is a linear
operator bounded on $L^2_w$ and $0

8. CMB 2010 (vol 54 pp. 113)
On the Norm of the BeurlingAhlfors Operator in Several Dimensions
The generalized BeurlingAhlfors operator $S$ on
$L^p(\mathbb{R}^n;\Lambda)$, where $\Lambda:=\Lambda(\mathbb{R}^n)$ is the
exterior algebra with its natural Hilbert space norm, satisfies the
estimate
$$\S\_{\mathcal{L}(L^p(\mathbb{R}^n;\Lambda))}\leq(n/2+1)(p^*1),\quad
p^*:=\max\{p,p'\}$$
This improves on earlier results in all dimensions $n\geq 3$. The
proof is based on the heat extension and relies at the bottom on
Burkholder's sharp inequality for martingale transforms.
Categories:42B20, 60G46 
9. CMB 2010 (vol 54 pp. 100)
On the Generalized Marcinkiewicz Integral Operators with Rough Kernels A class of generalized Marcinkiewicz
integral operators is introduced, and, under rather weak conditions
on the integral kernels, the boundedness of such operators on $L^p$
and TriebelLizorkin spaces is established.
Keywords: Marcinkiewicz integral, LittlewoodPaley theory, TriebelLizorkin space, rough kernel, product domain Categories:42B20, , , , , 42B25, 42B30, 42B99 
10. CMB 2010 (vol 54 pp. 172)
Measures with Fourier Transforms in $L^2$ of a Halfspace
We prove that if the Fourier transform of a compactly supported
measure is in $L^2$ of a halfspace, then the measure is
absolutely continuous to Lebesgue measure. We then show how this
result can be used to translate information about the
dimensionality of a measure and the decay of its Fourier
transform into geometric information about its support.
Categories:42B10, 28A75 
11. CMB 2010 (vol 53 pp. 491)
The Weak Type (1,1) Estimates of Maximal Functions on the Laguerre Hypergroup In this paper, we discuss various maximal functions on the Laguerre hypergroup $\mathbf{K}$ including the heat maximal function, the Poisson maximal function, and the HardyLittlewood maximal function which is consistent with the structure of hypergroup of $\mathbf{K}$. We shall establish the weak type $(1,1)$ estimates for these maximal functions. The $L^p$ estimates for $p>1$ follow from the interpolation. Some applications are included.
Keywords:Laguerre hypergroup, maximal function, heat kernel, Poisson kernel Categories:42B25, 43A62 
12. CMB 2009 (vol 53 pp. 263)
Weighted Norm Inequalities for a Maximal Operator in Some Subspace of Amalgams We give weighted norm inequalities for the maximal fractional operator $ \mathcal M_{q,\beta }$ of HardyÂLittlewood and the fractional integral $I_{\gamma}$. These inequalities are established between $(L^{q},L^{p}) ^{\alpha }(X,d,\mu )$ spaces (which are superspaces of Lebesgue spaces $L^{\alpha}(X,d,\mu)$ and subspaces of amalgams $(L^{q},L^{p})(X,d,\mu)$) and in the setting of space of homogeneous type $(X,d,\mu)$. The conditions on the weights are stated in terms of Orlicz norm.
Keywords:fractional maximal operator, fractional integral, space of homogeneous type Categories:42B35, 42B20, 42B25 
13. CMB 2009 (vol 52 pp. 521)
The Parabolic LittlewoodPaley Operator with Hardy Space Kernels In this paper, we give the $L^p$ boundedness for
a class of parabolic LittlewoodPaley $g$function with its kernel
function $\Omega$ is in the Hardy space $H^1(S^{n1})$.
Keywords:parabolic LittlewoodPaley operator, Hardy space, rough kernel Categories:42B20, 42B25 
14. CMB 2006 (vol 49 pp. 414)
Commutators Estimates on TriebelLizorkin Spaces In this paper, we consider the behavior of the commutators of convolution
operators on the TriebelLizorkin spaces $\dot{F}^{s, q} _p$.
Keywords:commutators, TriebelLizorkin spaces, paraproduct Categories:42B, 46F 
15. CMB 2006 (vol 49 pp. 3)
On a Class of Singular Integral Operators With Rough Kernels In this paper, we study the $L^p$ mapping properties of a class of singular
integral operators with rough kernels belonging to certain block spaces. We
prove that our operators are bounded on $L^p$ provided that their kernels
satisfy a size condition much weaker than that for the classical
Calder\'{o}nZygmund singular integral operators. Moreover, we present an
example showing that our size condition is optimal. As a consequence of our
results, we substantially improve a previously known result on certain maximal
functions.
Keywords:Singular integrals, Rough kernels, Square functions,, Maximal functions, Block spaces Categories:42B20, 42B15, 42B25 
16. CMB 2005 (vol 48 pp. 260)
A Restriction Theorem for a \\$k$Surface in $\mathbb R ^n$ We establish a sharp Fourier restriction estimate
for a measure on a $k$surface in $\mathbb R ^n$, where $n=k(k+3)/2$.
Keywords:Fourier restriction Category:42B10 
17. CMB 2004 (vol 47 pp. 3)
Singular Integrals With Rough Kernels In this paper we establish the $L^p$ boundedness of a class of
singular integrals with rough kernels associated to polynomial
mappings.
Category:42B20 
18. CMB 2003 (vol 46 pp. 191)
Weak Type Estimates of the Maximal Quasiradial BochnerRiesz Operator On Certain Hardy Spaces Let $\{A_t\}_{t>0}$ be the dilation group in $\mathbb{R}^n$ generated
by the infinitesimal generator $M$ where $A_t=\exp(M\log t)$, and let
$\varrho\in C^{\infty}(\mathbb{R}^n\setminus\{0\})$ be a
$A_t$homogeneous distance function defined on $\mathbb{R}^n$. For
$f\in \mathfrak{S}(\mathbb{R}^n)$, we define the maximal quasiradial
BochnerRiesz operator $\mathfrak{M}^{\delta}_{\varrho}$ of index
$\delta>0$ by
$$
\mathfrak{M}^{\delta}_{\varrho} f(x)=\sup_{t>0}\mathcal{F}^{1}
[(1\varrho/t)_+^{\delta}\hat f ](x).
$$
If $A_t=t I$ and $\{\xi\in \mathbb{R}^n\mid \varrho(\xi)=1\}$ is a
smooth convex hypersurface of finite type, then we prove in an
extremely easy way that $\mathfrak{M}^{\delta}_{\varrho}$ is well
defined on $H^p(\mathbb{R}^n)$ when $\delta=n(1/p1/2)1/2$ and
$0 n(1/p1/2)1/2$ and $0

19. CMB 2002 (vol 45 pp. 46)
Local $\VMO$ and Weak Convergence in $\hone$ A local version of $\VMO$ is defined, and the local Hardy space
$\hone$ is shown to be its dual. An application to weak$*$
convergence in $\hone$ is proved.
Categories:42B30, 46E99 
20. CMB 2002 (vol 45 pp. 25)
Extrapolation of $L^p$ Data from a Modular Inequality If an operator $T$ satisfies a modular inequality on a rearrangement
invariant space $L^\rho (\Omega,\mu)$, and if $p$ is strictly between
the indices of the space, then the Lebesgue inequality $\int Tf^p
\leq C \int f^p$ holds. This extrapolation result is a partial
converse to the usual interpolation results. A modular inequality for
Orlicz spaces takes the form $\int \Phi (Tf) \leq \int \Phi (C
f)$, and here, one can extrapolate to the (finite) indices $i(\Phi)$
and $I(\Phi)$ as well.
Category:42B25 
21. CMB 2001 (vol 44 pp. 121)
A Necessary Condition for Multipliers of Weak Type $(1,1)$ Simple necessary conditions for weak type $(1,1)$ of
invariant operators on $L(\rr^d)$ and their applications to
rational Fourier multiplier are given.
Categories:42B15, 42B20 
22. CMB 2000 (vol 43 pp. 330)
Maximal Operators and Cantor Sets We consider maximal operators in the plane, defined by Cantor sets of
directions, and show such operators are not bounded on $L^2$ if the
Cantor set has positive Hausdorff dimension.
Keywords:maximal functions, Cantor set, lacunary set Categories:42B25, 43A46 
23. CMB 2000 (vol 43 pp. 17)
Multilinear Proofs for Convolution Estimates for Degenerate Plane Curves Suppose that $\g \in C^2\bigl([0,\infty)\bigr)$ is a realvalued function
such that $\g(0)=\g'(0)=0$, and $\g''(t)\approx t^{m2}$, for some integer
$m\geq 2$. Let $\Gamma (t)=\bigl(t,\g(t)\bigr)$, $t>0$, be a curve in the
plane, and let $d \lambda =dt$ be a measure on this curve. For a
function $f$
on $\bR^2$, let
$$
Tf(x)=(\lambda *f)(x)=\int_0^{\infty} f\bigl(x\Gamma(t)\bigr)\,dt,
\quad x\in\bR^2 .
$$
An elementary proof is given for the optimal $L^p$$L^q$ mapping
properties of $T$.
Categories:42A85, 42B15 
24. CMB 2000 (vol 43 pp. 63)
Sharpness Results and Knapp's Homogeneity Argument We prove that the $L^2$ restriction theorem, and $L^p \to L^{p'}$,
$\frac{1}{p}+\frac{1}{p'}=1$, boundedness of the surface averages
imply certain geometric restrictions on the underlying
hypersurface. We deduce that these bounds imply that a certain
number of principal curvatures do not vanish.
Category:42B99 
25. CMB 1999 (vol 42 pp. 463)
A Generalized Characterization of Commutators of Parabolic Singular Integrals Let $x=(x_1, \dots, x_n)\in\rz$ and $\dz_\lz x=(\lz^{\az_1}x_1,
\dots,\lz^{\az_n}x_n)$, where $\lz>0$ and $1\le \az_1\le\cdots
\le\az_n$. Denote $\az=\az_1+\cdots+\az_n$. We characterize those
functions $A(x)$ for which the parabolic Calder\'on commutator
$$
T_{A}f(x)\equiv \pv \int_{\mathbb{R}^n}
K(xy)[A(x)A(y)]f(y)\,dy
$$
is bounded on $L^2(\mathbb{R}^n)$, where $K(\dz_\lz x)=\lz^{\az1}K(x)$,
$K$ is smooth away from the origin and satisfies a certain cancellation
property.
Keywords:parabolic singular integral, commutator, parabolic $\BMO$ sobolev space, homogeneous space, T1theorem, symbol Category:42B20 