1. CMB Online first
 Feng, Han

Uncertainty Principles on weighted spheres, balls and simplexes
This paper studies the uncertainty principle for spherical
$h$harmonic expansions on the unit sphere of $\mathbb{R}^d$ associated
with a weight function invariant under a general finite reflection
group, which
is in full analogy with the classical Heisenberg inequality.
Our proof is motivated by a new decomposition of the DunklLaplaceBeltrami
operator on the weighted sphere.
Keywords:uncertainty principle, Dunkl theory Categories:42C10, 42B10 

2. CMB 2011 (vol 56 pp. 326)
3. CMB 2010 (vol 54 pp. 172)
 Shayya, Bassam

Measures with Fourier Transforms in $L^2$ of a Halfspace
We prove that if the Fourier transform of a compactly supported
measure is in $L^2$ of a halfspace, then the measure is
absolutely continuous to Lebesgue measure. We then show how this
result can be used to translate information about the
dimensionality of a measure and the decay of its Fourier
transform into geometric information about its support.
Categories:42B10, 28A75 

4. CMB 2005 (vol 48 pp. 260)