Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 39B82 ( Stability, separation, extension, and related topics [See also 46A22] )

  Expand all        Collapse all Results 1 - 2 of 2

1. CMB 2016 (vol 60 pp. 95)

Choi, Chang-Kwon; Chung, Jaeyoung; Ju, Yumin; Rassias, John
Cubic Functional Equations on Restricted Domains of Lebesgue Measure Zero
Let $X$ be a real normed space, $Y$ a Bancch space and $f:X \to Y$. We prove the Ulam-Hyers stability theorem for the cubic functional equation \begin{align*} f(2x+y)+f(2x-y)-2f(x+y)-2f(x-y)-12f(x)=0 \end{align*} in restricted domains. As an application we consider a measure zero stability problem of the inequality \begin{align*} \|f(2x+y)+f(2x-y)-2f(x+y)-2f(x-y)-12f(x)\|\le \epsilon \end{align*} for all $(x, y)$ in $\Gamma\subset\mathbb R^2$ of Lebesgue measure 0.

Keywords:Baire category theorem, cubic functional equation, first category, Lebesgue measure, Ulam-Hyers stability

2. CMB 2014 (vol 58 pp. 30)

Chung, Jaeyoung
On an Exponential Functional Inequality and its Distributional Version
Let $G$ be a group and $\mathbb K=\mathbb C$ or $\mathbb R$. In this article, as a generalization of the result of Albert and Baker, we investigate the behavior of bounded and unbounded functions $f\colon G\to \mathbb K$ satisfying the inequality $ \Bigl|f \Bigl(\sum_{k=1}^n x_k \Bigr)-\prod_{k=1}^n f(x_k) \Bigr|\le \phi(x_2, \dots, x_n),\quad \forall\, x_1, \dots, x_n\in G, $ where $\phi\colon G^{n-1}\to [0, \infty)$. Also, as a distributional version of the above inequality we consider the stability of the functional equation \begin{equation*} u\circ S - \overbrace{u\otimes \cdots \otimes u}^{n-\text {times}}=0, \end{equation*} where $u$ is a Schwartz distribution or Gelfand hyperfunction, $\circ$ and $\otimes$ are the pullback and tensor product of distributions, respectively, and $S(x_1, \dots, x_n)=x_1+ \dots +x_n$.

Keywords:distribution, exponential functional equation, Gelfand hyperfunction, stability
Categories:46F99, 39B82

© Canadian Mathematical Society, 2017 :