1. CMB 2011 (vol 55 pp. 214)
 Wang, DaBin

Positive Solutions of Impulsive Dynamic System on Time Scales
In this paper, some criteria for the existence of positive solutions of a class
of systems of impulsive dynamic equations on time scales are obtained by
using a fixed point theorem in cones.
Keywords:time scale, positive solution, fixed point, impulsive dynamic equation Categories:39A10, 34B15 

2. CMB 2011 (vol 54 pp. 580)
 Baoguo, Jia; Erbe, Lynn; Peterson, Allan

Kiguradzetype Oscillation Theorems for Second Order Superlinear Dynamic Equations on Time Scales
Consider the second order superlinear dynamic equation
\begin{equation*}
(*)\qquad
x^{\Delta\Delta}(t)+p(t)f(x(\sigma(t)))=0\tag{$*$}
\end{equation*}
where $p\in C(\mathbb{T},\mathbb{R})$, $\mathbb{T}$ is a time scale,
$f\colon\mathbb{R}\rightarrow\mathbb{R}$ is
continuously differentiable and satisfies $f'(x)>0$, and $xf(x)>0$ for
$x\neq 0$. Furthermore, $f(x)$ also satisfies a superlinear condition, which
includes the nonlinear function $f(x)=x^\alpha$ with $\alpha>1$, commonly
known as the EmdenFowler case. Here the coefficient function $p(t)$ is
allowed to be negative for arbitrarily large values of $t$. In addition to
extending the result of Kiguradze for \eqref{star1} in the real case $\mathbb{T}=\mathbb{R}$, we
obtain analogues in the difference equation and $q$difference equation cases.
Keywords:Oscillation, EmdenFowler equation, superlinear Categories:34K11, 39A10, 39A99 

3. CMB 2008 (vol 51 pp. 161)
 Agarwal, Ravi P.; OteroEspinar, Victoria; Perera, Kanishka; Vivero, Dolores R.

Wirtinger's Inequalities on Time Scales
This paper is devoted to the study of Wirtingertype
inequalities for the Lebesgue $\Delta$integral on an arbitrary time scale $\T$.
We prove a general inequality for a class of absolutely continuous
functions on closed subintervals of an adequate subset of $\T$.
By using this expression and by assuming that $\T$ is bounded,
we deduce that
a general inequality is valid for every absolutely continuous function on $\T$
such that its $\Delta$derivative belongs to $L_\Delta^2([a,b)\cap\T)$ and at most it vanishes
on the boundary of $\T$.
Keywords:time scales calculus, $\Delta$integral, Wirtinger's inequality Category:39A10 
