CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 37B10 ( Symbolic dynamics [See also 37Cxx, 37Dxx] )

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB 2008 (vol 51 pp. 545)

Ionescu, Marius; Watatani, Yasuo
$C^{\ast}$-Algebras Associated with Mauldin--Williams Graphs
A Mauldin--Williams graph $\mathcal{M}$ is a generalization of an iterated function system by a directed graph. Its invariant set $K$ plays the role of the self-similar set. We associate a $C^{*}$-algebra $\mathcal{O}_{\mathcal{M}}(K)$ with a Mauldin--Williams graph $\mathcal{M}$ and the invariant set $K$, laying emphasis on the singular points. We assume that the underlying graph $G$ has no sinks and no sources. If $\mathcal{M}$ satisfies the open set condition in $K$, and $G$ is irreducible and is not a cyclic permutation, then the associated $C^{*}$-algebra $\mathcal{O}_{\mathcal{M}}(K)$ is simple and purely infinite. We calculate the $K$-groups for some examples including the inflation rule of the Penrose tilings.

Categories:46L35, 46L08, 46L80, 37B10

2. CMB 2004 (vol 47 pp. 168)

Baake, Michael; Sing, Bernd
Kolakoski-$(3,1)$ Is a (Deformed) Model Set
Unlike the (classical) Kolakoski sequence on the alphabet $\{1,2\}$, its analogue on $\{1,3\}$ can be related to a primitive substitution rule. Using this connection, we prove that the corresponding bi-infinite fixed point is a regular generic model set and thus has a pure point diffraction spectrum. The Kolakoski-$(3,1)$ sequence is then obtained as a deformation, without losing the pure point diffraction property.

Categories:52C23, 37B10, 28A80, 43A25

3. CMB 2002 (vol 45 pp. 697)

Sirvent, V. F.; Solomyak, B.
Pure Discrete Spectrum for One-dimensional Substitution Systems of Pisot Type
We consider two dynamical systems associated with a substitution of Pisot type: the usual $\mathbb{Z}$-action on a sequence space, and the $\mathbb{R}$-action, which can be defined as a tiling dynamical system or as a suspension flow. We describe procedures for checking when these systems have pure discrete spectrum (the ``balanced pairs algorithm'' and the ``overlap algorithm'') and study the relation between them. In particular, we show that pure discrete spectrum for the $\mathbb{R}$-action implies pure discrete spectrum for the $\mathbb{Z}$-action, and obtain a partial result in the other direction. As a corollary, we prove pure discrete spectrum for every $\mathbb{R}$-action associated with a two-symbol substitution of Pisot type (this is conjectured for an arbitrary number of symbols).

Categories:37A30, 52C23, 37B10

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/