1. CMB Online first
 Stoyanov, Luchezar

On Gibbs measures and spectra of Ruelle transfer operators
We prove a comprehensive version of the RuellePerronFrobenius
Theorem
with explicit estimates of the spectral radius of the Ruelle
transfer operator and various other
quantities related to spectral properties of this operator. The
novelty here is that the HÃ¶lder
constant of the function generating the operator appears only
polynomially, not exponentially as
in previous known estimates.
Keywords:subshift of finite type, Ruelle transfer operator, Gibbs measure Categories:37A05, 37B10 

2. CMB 2008 (vol 51 pp. 545)
 Ionescu, Marius; Watatani, Yasuo

$C^{\ast}$Algebras Associated with MauldinWilliams Graphs
A MauldinWilliams graph $\mathcal{M}$ is a generalization of an
iterated function system by a directed graph. Its invariant set $K$
plays the role of the selfsimilar set. We associate a $C^{*}$algebra
$\mathcal{O}_{\mathcal{M}}(K)$ with a MauldinWilliams graph $\mathcal{M}$
and the invariant set $K$, laying emphasis on the singular points.
We assume that the underlying graph $G$ has no sinks and no sources.
If $\mathcal{M}$ satisfies the open set condition in $K$, and $G$
is irreducible and is not a cyclic permutation, then the associated
$C^{*}$algebra $\mathcal{O}_{\mathcal{M}}(K)$ is simple and purely
infinite. We calculate the $K$groups for some examples including the
inflation rule of the Penrose tilings.
Categories:46L35, 46L08, 46L80, 37B10 

3. CMB 2004 (vol 47 pp. 168)
 Baake, Michael; Sing, Bernd

Kolakoski$(3,1)$ Is a (Deformed) Model Set
Unlike the (classical) Kolakoski sequence on the alphabet $\{1,2\}$, its analogue
on $\{1,3\}$ can be related to a primitive substitution rule. Using this connection,
we prove that the corresponding biinfinite fixed point is a regular generic model set
and thus has a pure point diffraction spectrum. The Kolakoski$(3,1)$ sequence is
then obtained as a deformation, without losing the pure point diffraction property.
Categories:52C23, 37B10, 28A80, 43A25 

4. CMB 2002 (vol 45 pp. 697)
 Sirvent, V. F.; Solomyak, B.

Pure Discrete Spectrum for Onedimensional Substitution Systems of Pisot Type
We consider two dynamical systems associated with a substitution of
Pisot type: the usual $\mathbb{Z}$action on a sequence space, and
the $\mathbb{R}$action, which can be defined as a tiling dynamical
system or as a suspension flow. We describe procedures for checking
when these systems have pure discrete spectrum (the ``balanced
pairs algorithm'' and the ``overlap algorithm'') and study the
relation between them. In particular, we show that pure discrete
spectrum for the $\mathbb{R}$action implies pure discrete spectrum
for the $\mathbb{Z}$action, and obtain a partial result in the
other direction. As a corollary, we prove pure discrete spectrum
for every $\mathbb{R}$action associated with a twosymbol
substitution of Pisot type (this is conjectured for an arbitrary
number of symbols).
Categories:37A30, 52C23, 37B10 
