CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 37B05 ( Transformations and group actions with special properties (minimality, distality, proximality, etc.) )

  Expand all        Collapse all Results 1 - 4 of 4

1. CMB Online first

Gonçalves, Daniel
Simplicity of Partial Skew Group Rings of Abelian Groups
Let $A$ be a ring with local units, $E$ a set of local units for $A$, $G$ an abelian group and $\alpha$ a partial action of $G$ by ideals of $A$ that contain local units. We show that $A\star_{\alpha} G$ is simple if and only if $A$ is $G$-simple and the center of the corner $e\delta_0 (A\star_{\alpha} G) e \delta_0$ is a field for all $e\in E$. We apply the result to characterize simplicity of partial skew group rings in two cases, namely for partial skew group rings arising from partial actions by clopen subsets of a compact set and partial actions on the set level.

Keywords:partial skew group rings, simple rings, partial actions, abelian groups
Categories:16S35, 37B05

2. CMB 2012 (vol 56 pp. 709)

Bartošová, Dana
Universal Minimal Flows of Groups of Automorphisms of Uncountable Structures
It is a well-known fact, that the greatest ambit for a topological group $G$ is the Samuel compactification of $G$ with respect to the right uniformity on $G.$ We apply the original description by Samuel from 1948 to give a simple computation of the universal minimal flow for groups of automorphisms of uncountable structures using Fraïssé theory and Ramsey theory. This work generalizes some of the known results about countable structures.

Keywords:universal minimal flows, ultrafilter flows, Ramsey theory
Categories:37B05, 03E02, 05D10, 22F50, 54H20

3. CMB 2011 (vol 55 pp. 297)

Glasner, Eli
The Group $\operatorname{Aut}(\mu)$ is Roelcke Precompact
Following a similar result of Uspenskij on the unitary group of a separable Hilbert space, we show that, with respect to the lower (or Roelcke) uniform structure, the Polish group $G= \operatorname{Aut}(\mu)$ of automorphisms of an atomless standard Borel probability space $(X,\mu)$ is precompact. We identify the corresponding compactification as the space of Markov operators on $L_2(\mu)$ and deduce that the algebra of right and left uniformly continuous functions, the algebra of weakly almost periodic functions, and the algebra of Hilbert functions on $G$, i.e., functions on $G$ arising from unitary representations, all coincide. Again following Uspenskij, we also conclude that $G$ is totally minimal.

Keywords:Roelcke precompact, unitary group, measure preserving transformations, Markov operators, weakly almost periodic functions
Categories:54H11, 22A05, 37B05, 54H20

4. CMB 2007 (vol 50 pp. 418)

Matui, Hiroki
A Short Proof of Affability for Certain Cantor Minimal $\Z^2$-Systems
We will show that any extension of a product of two Cantor minimal $\Z$-systems is affable in the sense of Giordano, Putnam and Skau.

Category:37B05

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/