Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 35P15 ( Estimation of eigenvalues, upper and lower bounds )

  Expand all        Collapse all Results 1 - 4 of 4

1. CMB Online first

Kachmar, Ayman
A new formula for the energy of bulk superconductivity
The energy of a type II superconductor submitted to an external magnetic field of intensity close to the second critical field is given by the celebrated Abrikosov energy. If the external magnetic field is comparable to and below the second critical field, the energy is given by a reference function obtained as a special (thermodynamic) limit of a non-linear energy. In this note, we give a new formula for this reference energy. In particular, we obtain it as a special limit of a linear energy defined over configurations normalized in the $L^4$-norm.

Keywords:Ginzburg-Landau functional
Categories:35B40, 35P15, 35Q56

2. CMB 2011 (vol 55 pp. 88)

Ghanbari, K.; Shekarbeigi, B.
Inequalities for Eigenvalues of a General Clamped Plate Problem
Let $D$ be a connected bounded domain in $\mathbb{R}^n$. Let $0<\mu_1\leq\mu_2\leq\dots\leq\mu_k\leq\cdots$ be the eigenvalues of the following Dirichlet problem: $$ \begin{cases}\Delta^2u(x)+V(x)u(x)=\mu\rho(x)u(x),\quad x\in D u|_{\partial D}=\frac{\partial u}{\partial n}|_{\partial D}=0, \end{cases} $$ where $V(x)$ is a nonnegative potential, and $\rho(x)\in C(\bar{D})$ is positive. We prove the following inequalities: $$\mu_{k+1}\leq\frac{1}{k}\sum_{i=1}^k\mu_i+\Bigl[\frac{8(n+2)}{n^2}\Bigl(\frac{\rho_{\max}} {\rho_{\min}}\Bigr)^2\Bigr]^{1/2}\times \frac{1}{k}\sum_{i=1}^k[\mu_i(\mu_{k+1}-\mu_i)]^{1/2}, $$ $$\frac{n^2k^2}{8(n+2)}\leq \Bigl(\frac{\rho_{\max}}{\rho_{\min}}\Bigr)^2\Bigl[\sum_{i=1}^k\frac{\mu_i^{1/2}}{\mu_{k+1}-\mu_i}\Bigr] \times\sum_{i=1}^k\mu_i^{1/2}. $$

Keywords:biharmonic operator, eigenvalue, eigenvector, inequality

3. CMB 2008 (vol 51 pp. 249)

Mangoubi, Dan
On the Inner Radius of a Nodal Domain
Let $M$ be a closed Riemannian manifold. We consider the inner radius of a nodal domain for a large eigenvalue $\lambda$. We give upper and lower bounds on the inner radius of the type $C/\lambda^\alpha(\log\lambda)^\beta$. Our proof is based on a local behavior of eigenfunctions discovered by Donnelly and Fefferman and a Poincar\'{e} type inequality proved by Maz'ya. Sharp lower bounds are known only in dimension two. We give an account of this case too.

Categories:58J50, 35P15, 35P20

4. CMB 2006 (vol 49 pp. 226)

Engman, Martin
The Spectrum and Isometric Embeddings of Surfaces of Revolution
A sharp upper bound on the first $S^{1}$ invariant eigenvalue of the Laplacian for $S^1$ invariant metrics on $S^2$ is used to find obstructions to the existence of $S^1$ equivariant isometric embeddings of such metrics in $(\R^3,\can)$. As a corollary we prove: If the first four distinct eigenvalues have even multiplicities then the metric cannot be equivariantly, isometrically embedded in $(\R^3,\can)$. This leads to generalizations of some classical results in the theory of surfaces.

Categories:58J50, 58J53, 53C20, 35P15

© Canadian Mathematical Society, 2016 :