Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 34D05 ( Asymptotic properties )

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB 2011 (vol 55 pp. 882)

Xueli, Song; Jigen, Peng
Equivalence of $L_p$ Stability and Exponential Stability of Nonlinear Lipschitzian Semigroups
$L_p$ stability and exponential stability are two important concepts for nonlinear dynamic systems. In this paper, we prove that a nonlinear exponentially bounded Lipschitzian semigroup is exponentially stable if and only if the semigroup is $L_p$ stable for some $p>0$. Based on the equivalence, we derive two sufficient conditions for exponential stability of the nonlinear semigroup. The results obtained extend and improve some existing ones.

Keywords:exponentially stable, $L_p$ stable, nonlinear Lipschitzian semigroups
Categories:34D05, 47H20

2. CMB 2010 (vol 54 pp. 527)

Preda, Ciprian; Sipos, Ciprian
On the Dichotomy of the Evolution Families: A Discrete-Argument Approach
We establish a discrete-time criteria guaranteeing the existence of an exponential dichotomy in the continuous-time behavior of an abstract evolution family. We prove that an evolution family ${\cal U}=\{U(t,s)\}_{t \geq s\geq 0}$ acting on a Banach space $X$ is uniformly exponentially dichotomic (with respect to its continuous-time behavior) if and only if the corresponding difference equation with the inhomogeneous term from a vector-valued Orlicz sequence space $l^\Phi(\mathbb{N}, X)$ admits a solution in the same $l^\Phi(\mathbb{N},X)$. The technique of proof effectively eliminates the continuity hypothesis on the evolution family (\emph{i.e.,} we do not assume that $U(\,\cdot\,,s)x$ or $U(t,\,\cdot\,)x$ is continuous on $[s,\infty)$, and respectively $[0,t]$). Thus, some known results given by Coffman and Schaffer, Perron, and Ta Li are extended.

Keywords:evolution families, exponential dichotomy, Orlicz sequence spaces, admissibility
Categories:34D05, 47D06, 93D20

3. CMB 2010 (vol 54 pp. 364)

Preda, Ciprian; Preda, Petre
Lyapunov Theorems for the Asymptotic Behavior of Evolution Families on the Half-Line
Two theorems regarding the asymptotic behavior of evolution families are established in terms of the solutions of a certain Lyapunov operator equation.

Keywords:evolution families, exponential instability, Lyapunov equation
Categories:34D05, 47D06

© Canadian Mathematical Society, 2014 :