Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 34C23 ( Bifurcation [See also 37Gxx] )

  Expand all        Collapse all Results 1 - 1 of 1

1. CMB 1997 (vol 40 pp. 276)

Chouikha, Raouf
Fonctions elliptiques et équations différentielles ordinaires
In this paper, we detail some results of a previous note concerning a trigonometric expansion of the Weierstrass elliptic function $\{\wp(z);\, 2\omega, 2\omega'\}$. In particular, this implies its classical Fourier expansion. We use a direct integration method of the ODE $$(E)\left\{\matrix{{d^2u \over dt^2} = P(u, \lambda)\hfill \cr u(0) = \sigma\hfill \cr {du \over dt}(0) = \tau\hfill \cr}\right.$$ where $P(u)$ is a polynomial of degree $n = 2$ or $3$. In this case, the bifurcations of $(E)$ depend on one parameter only. Moreover, this global method seems not to apply to the cases $n > 3$.

Categories:33E05, 34A05, 33E20, 33E30, 34A20, 34C23

© Canadian Mathematical Society, 2014 :