Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 32 ( Several complex variables and analytic spaces )

  Expand all        Collapse all Results 51 - 63 of 63

51. CMB 2002 (vol 45 pp. 80)

Gauthier, P. M.; Zeron, E. S.
Approximation On Arcs and Dendrites Going to Infinity in $\C^n$
On a locally rectifiable arc going to infinity, each continuous function can be approximated by entire functions.

Keywords:tangential approximation, Carleman
Categories:32E30, 32E25

52. CMB 2001 (vol 44 pp. 150)

Jakóbczak, Piotr
Exceptional Sets of Slices for Functions From the Bergman Space in the Ball
Let $B_N$ be the unit ball in $\mathbb{C}^N$ and let $f$ be a function holomorphic and $L^2$-integrable in $B_N$. Denote by $E(B_N,f)$ the set of all slices of the form $\Pi =L\cap B_N$, where $L$ is a complex one-dimensional subspace of $\mathbb{C}^N$, for which $f|_{\Pi}$ is not $L^2$-integrable (with respect to the Lebesgue measure on $L$). Call this set the exceptional set for $f$. We give a characterization of exceptional sets which are closed in the natural topology of slices.

Categories:32A37, 32A22

53. CMB 2001 (vol 44 pp. 105)

Pilipović, Stevan
Convolution Equation in $\mathcal{S}^{\prime\ast}$---Propagation of Singularities
The singular spectrum of $u$ in a convolution equation $\mu * u = f$, where $\mu$ and $f$ are tempered ultradistributions of Beurling or Roumieau type is estimated by $$ SS u \subset (\mathbf{R}^n \times \Char \mu) \cup SS f. $$ The same is done for $SS_{*}u$.

Categories:32A40, 46F15, 58G07

54. CMB 2001 (vol 44 pp. 126)

Zeron, E. Santillan
Each Copy of the Real Line in $\C^2$ is Removable
Around 1995, Professors Lupacciolu, Chirka and Stout showed that a closed subset of $\C^N$ ($N\geq 2$) is removable for holomorphic functions, if its topological dimension is less than or equal to $N-2$. Besides, they asked whether closed subsets of $\C^2$ homeomorphic to the real line (the simplest 1-dimensional sets) are removable for holomorphic functions. In this paper we propose a positive answer to that question.

Keywords:holomorphic function, removable set

55. CMB 2000 (vol 43 pp. 294)

Bracci, Filippo
Fixed Points of Commuting Holomorphic Maps Without Boundary Regularity
We identify a class of domains of $\C^n$ in which any two commuting holomorphic self-maps have a common fixed point.

Keywords:Holomorphic self-maps, commuting functions, fixed points, Wolff point, Julia's Lemma
Categories:32A10, 32A40, 32H15, 32A30

56. CMB 2000 (vol 43 pp. 174)

Gantz, Christian; Steer, Brian
Stable Parabolic Bundles over Elliptic Surfaces and over Riemann Surfaces
We show that the use of orbifold bundles enables some questions to be reduced to the case of flat bundles. The identification of moduli spaces of certain parabolic bundles over elliptic surfaces is achieved using this method.

Categories:14J27, 32L07, 14H60, 14D20

57. CMB 2000 (vol 43 pp. 47)

Božičević, Mladen
A Property of Lie Group Orbits
Let $G$ be a real Lie group and $X$ a real analytic manifold. Suppose that $G$ acts analytically on $X$ with finitely many orbits. Then the orbits are subanalytic in $X$. As a consequence we show that the micro-support of a $G$-equivariant sheaf on $X$ is contained in the conormal variety of the $G$-action.

Categories:32B20, 22E15

58. CMB 1999 (vol 42 pp. 499)

Zaharia, Alexandru
Characterizations of Simple Isolated Line Singularities
A line singularity is a function germ $f\colon(\CC ^{n+1},0) \lra\CC$ with a smooth $1$-dimensional critical set $\Sigma=\{(x,y)\in \CC\times \CC^n \mid y=0\}$. An isolated line singularity is defined by the condition that for every $x \neq 0$, the germ of $f$ at $(x,0)$ is equivalent to $y_1^2 +\cdots+y_n ^2$. Simple isolated line singularities were classified by Dirk Siersma and are analogous of the famous $A-D-E$ singularities. We give two new characterizations of simple isolated line singularities.

Categories:32S25, 14B05

59. CMB 1999 (vol 42 pp. 97)

Kwon, E. G.
On Analytic Functions of Bergman $\BMO$ in the Ball
Let $B = B_n$ be the open unit ball of $\bbd C^n$ with volume measure $\nu$, $U = B_1$ and ${\cal B}$ be the Bloch space on $U$. ${\cal A}^{2, \alpha} (B)$, $1 \leq \alpha < \infty$, is defined as the set of holomorphic $f\colon B \rightarrow \bbd C$ for which $$ \int_B \vert f(z) \vert^2 \left( \frac 1{\vert z\vert} \log \frac 1{1 - \vert z\vert } \right)^{-\alpha} \frac {d\nu (z)}{1-\vert z\vert} < \infty $$ if $0 < \alpha <\infty$ and ${\cal A}^{2, 1} (B) = H^2(B)$, the Hardy space. Our objective of this note is to characterize, in terms of the Bergman distance, those holomorphic $f\colon B \rightarrow U$ for which the composition operator $C_f \colon {\cal B} \rightarrow {\cal A}^{2, \alpha}(B)$ defined by $C_f (g) = g\circ f$, $g \in {\cal B}$, is bounded. Our result has a corollary that characterize the set of analytic functions of bounded mean oscillation with respect to the Bergman metric.

Keywords:Bergman distance, \BMOA$, Hardy space, Bloch function

60. CMB 1998 (vol 41 pp. 129)

Lee, Young Joo
Pluriharmonic symbols of commuting Toeplitz type operators on the weighted Bergman spaces
A class of Toeplitz type operators acting on the weighted Bergman spaces of the unit ball in the $n$-dimensional complex space is considered and two pluriharmonic symbols of commuting Toeplitz type operators are completely characterized.

Keywords:Pluriharmonic functions, Weighted Bergman spaces, Toeplitz type operators.
Categories:47B38, 32A37

61. CMB 1997 (vol 40 pp. 356)

Mazet, Pierre
Principe du maximum et lemme de Schwarz, a valeurs vectorielles
Nous {\'e}tablissons un th{\'e}or{\`e}me pour les fonctions holomorphes {\`a} valeurs dans une partie convexe ferm{\'e}e. Ce th{\'e}or{\`e}me pr{\'e}cise la position des coefficients de Taylor de telles fonctions et peut {\^e}tre consid{\'e}r{\'e} comme une g{\'e}n{\'e}ralisation des in{\'e}galit{\'e}s de Cauchy. Nous montrons alors comment ce th{\'e}or{\`e}me permet de retrouver des versions connues du principe du maximum et d'obtenir de nouveaux r{\'e}sultats sur les applications holomorphes {\`a} valeurs vectorielles.

Keywords:Principe du maximum, lemme de Schwarz, points extr{émaux.
Categories:30C80, 32A30, 46G20, 52A07

62. CMB 1997 (vol 40 pp. 129)

Badea, Catalin
Sur les caractères d'une algèbre de Banach
A new proof for the Gleason-Kahane-\.Zelazko theorem concerning the characters of a Banach algebra is given. A theorem due to P\'olya and Saxer is used instead of the Hadamard factorization theorem.

Categories:46H05, 32A15

63. CMB 1997 (vol 40 pp. 117)

Vigué, Jean-Pierre
Un lemme de Schwarz pour les boules-unités ouvertes
Let $B_1$ and $B_2$ be the open unit balls of ${\bbd C}^{n_1}$ and ${\bbd C}^{n_2}$ for the norms $\Vert\,{.}\,\Vert_1$ and $\Vert\,{.}\, \Vert_2$. Let $f \colon B_1 \rightarrow B_2$ be a holomorphic mapping such that $f(0)=0$. It is well known that, for every $z \in B_1$, $\Vert f(z)\Vert_2 \leq \Vert z \Vert_1$, and $\Vert f'(0)\Vert \leq 1$. In this paper, I prove the converse of this result. Let $f \colon B_1 \rightarrow B_2$ be a holomorphic mapping such that $f'(0)$ is an isometry. If $B_2$ is strictly convex, I prove that $f(0) =0$ and that $f$ is linear. I also define the rank of a point $x$ belonging to the boundary of $B_1$ or $B_2$. Under some hypotheses on the ranks, I prove that a holomorphic mapping such that $f(0) = 0$ and that $f'(0)$ is an isometry is linear.

Categories:32H15, 32H02
   1 2 3    

© Canadian Mathematical Society, 2014 :