CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 30H05 ( Bounded analytic functions )

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB 2009 (vol 53 pp. 23)

Chen, Huaihui; Zhang, Minzhu
Boundedness From Below of Multiplication Operators Between $\alpha$-Bloch Spaces
In this paper, the boundedness from below of multiplication operators between $\alpha$-Bloch spaces $\mathcal B^\alpha$, $\alpha\gt 0$, on the unit disk $D$ is studied completely. For a bounded multiplication operator $M_u\colon \mathcal B^\alpha\to\mathcal B^\beta$, defined by $M_uf=uf$ for $f\in\mathcal B^\alpha$, we prove the following result: (i) If $0\lt \beta\lt \alpha$, or $0\lt \alpha\le1$ and $\alpha\lt \beta$, $M_u$ is not bounded below; (ii) if $0\lt \alpha=\beta\le1$, $M_u$ is bounded below if and only if $\liminf_{z\to\partial D}|u(z)|\gt 0$; (iii) if $1\lt \alpha\le\beta$, $M_u$ is bounded below if and only if there exist a $\delta\gt 0$ and a positive $r\lt 1$ such that for every point $z\in D$ there is a point $z'\in D$ with the property $d(z',z)\lt r$ and $(1-|z'|^2)^{\beta-\alpha}|u(z')|\ge\delta$, where $d(\cdot,\cdot)$ denotes the pseudo-distance on $D$.

Keywords:$\alpha$-Bloch function, multiplication operator
Categories:32A18, 30H05

2. CMB 2008 (vol 51 pp. 195)

Chen, Huaihui; Gauthier, Paul
Boundedness from Below of Composition Operators on $\alpha$-Bloch Spaces
We give a necessary and sufficient condition for a composition operator on an $\alpha$-Bloch space with $\alpha\ge 1$ to be bounded below. This extends a known result for the Bloch space due to P. Ghatage, J. Yan, D. Zheng, and H. Chen.

Keywords:Bloch functions, composition operators
Categories:32A18, 30H05

3. CMB 1997 (vol 40 pp. 475)

Lou, Zengjian
Coefficient multipliers of Bergman spaces $A^p$, II
We show that the multiplier space $(A^1,X)=\{g:M_\infty(r,g'') =O(1-r)^{-1}\}$, where $X$ is $\BMOA$, $\VMOA$, $B$, $B_0$ or disk algebra $A$. We give the multipliers from $A^1$ to $A^q(H^q)(1\le q\le \infty)$, we also give the multipliers from $l^p(1\le p\le 2), C_0, \BMOA$, and $H^p(2\le p<\infty)$ into $A^q(1\le q\le 2)$.

Keywords:Multiplier, Bergman space, Hardy space, Bloch space, $\BMOA$.
Categories:30H05, 30B10

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/