CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 30C80 ( Maximum principle; Schwarz's lemma, Lindelof principle, analogues and generalizations; subordination )

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB Online first

Tang, Xiaomin; Liu, Taishun
Schwarz Lemma at the Boundary of the Egg Domain $B_{p_1, p_2}$ in $\mathbb{C}^n$
Let $B_{p_1, p_2}=\{z\in\mathbb{C}^n: |z_1|^{p_1}+|z_2|^{p_2}+\cdots+|z_n|^{p_2}\lt 1\}$ be an egg domain in $\mathbb{C}^n$. In this paper, we first characterize the Kobayashi metric on $B_{p_1, p_2}\,(p_1\geq 1, p_2\geq 1)$, and then establish a new type of the classical boundary Schwarz lemma at $z_0\in\partial{B_{p_1, p_2}}$ for holomorphic self-mappings of $B_{p_1, p_2}(p_1\geq 1, p_2\gt 1)$, where $z_0=(e^{i\theta}, 0, \dots, 0)'$ and $\theta\in \mathbb{R}$.

Keywords:holomorphic mapping, Schwarz lemma, Kobayashi metric, egg domain
Categories:32H02, 30C80, 32A30

2. CMB 2012 (vol 56 pp. 241)

Betsakos, Dimitrios; Pouliasis, Stamatis
Versions of Schwarz's Lemma for Condenser Capacity and Inner Radius
We prove variants of Schwarz's lemma involving monotonicity properties of condenser capacity and inner radius. Also, we examine when a similar monotonicity property holds for the hyperbolic metric.

Keywords:condenser capacity, inner radius, hyperbolic metric, Schwarz's lemma
Categories:30C80, 30F45, 31A15

3. CMB 1997 (vol 40 pp. 356)

Mazet, Pierre
Principe du maximum et lemme de Schwarz, a valeurs vectorielles
Nous {\'e}tablissons un th{\'e}or{\`e}me pour les fonctions holomorphes {\`a} valeurs dans une partie convexe ferm{\'e}e. Ce th{\'e}or{\`e}me pr{\'e}cise la position des coefficients de Taylor de telles fonctions et peut {\^e}tre consid{\'e}r{\'e} comme une g{\'e}n{\'e}ralisation des in{\'e}galit{\'e}s de Cauchy. Nous montrons alors comment ce th{\'e}or{\`e}me permet de retrouver des versions connues du principe du maximum et d'obtenir de nouveaux r{\'e}sultats sur les applications holomorphes {\`a} valeurs vectorielles.

Keywords:Principe du maximum, lemme de Schwarz, points extr{émaux.
Categories:30C80, 32A30, 46G20, 52A07

© Canadian Mathematical Society, 2014 : https://cms.math.ca/