Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 30B50 ( Dirichlet series and other series expansions, exponential series [See also 11M41, 42-XX] )

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB 2015 (vol 59 pp. 119)

Hu, Pei-Chu; Li, Bao Qin
A Simple Proof and Strengthening of a Uniqueness Theorem for L-functions
We give a simple proof and strengthening of a uniqueness theorem for functions in the extended Selberg class.

Keywords:meromorphic function, Dirichlet series, L-function, zero, order, uniqueness
Categories:30B50, 11M41

2. CMB 2011 (vol 56 pp. 194)

Stefánsson, Úlfar F.
On the Smallest and Largest Zeros of Müntz-Legendre Polynomials
Müntz-Legendre polynomials $L_n(\Lambda;x)$ associated with a sequence $\Lambda=\{\lambda_k\}$ are obtained by orthogonalizing the system $(x^{\lambda_0}, x^{\lambda_1}, x^{\lambda_2}, \dots)$ in $L_2[0,1]$ with respect to the Legendre weight. If the $\lambda_k$'s are distinct, it is well known that $L_n(\Lambda;x)$ has exactly $n$ zeros $l_{n,n}\lt l_{n-1,n}\lt \cdots \lt l_{2,n}\lt l_{1,n}$ on $(0,1)$. First we prove the following global bound for the smallest zero, $$ \exp\biggl(-4\sum_{j=0}^n \frac{1}{2\lambda_j+1}\biggr) \lt l_{n,n}. $$ An important consequence is that if the associated Müntz space is non-dense in $L_2[0,1]$, then $$ \inf_{n}x_{n,n}\geq \exp\biggl({-4\sum_{j=0}^{\infty} \frac{1}{2\lambda_j+1}}\biggr)\gt 0, $$ so the elements $L_n(\Lambda;x)$ have no zeros close to 0. Furthermore, we determine the asymptotic behavior of the largest zeros; for $k$ fixed, $$ \lim_{n\rightarrow\infty} \vert \log l_{k,n}\vert \sum_{j=0}^n (2\lambda_j+1)= \Bigl(\frac{j_k}{2}\Bigr)^2, $$ where $j_k$ denotes the $k$-th zero of the Bessel function $J_0$.

Keywords:Müntz polynomials, Müntz-Legendre polynomials
Categories:42C05, 42C99, 41A60, 30B50

3. CMB 2007 (vol 50 pp. 11)

Borwein, David; Borwein, Jonathan
van der Pol Expansions of L-Series
We provide concise series representations for various L-series integrals. Different techniques are needed below and above the abscissa of absolute convergence of the underlying L-series.

Keywords:Dirichlet series integrals, Hurwitz zeta functions, Plancherel theorems, L-series
Categories:11M35, 11M41, 30B50

© Canadian Mathematical Society, 2016 :