26. CMB 2009 (vol 52 pp. 53)
 Cummins, C. J.

Cusp Forms Like $\Delta$
Let $f$ be a squarefree integer and denote by $\Gamma_0(f)^+$ the
normalizer of $\Gamma_0(f)$ in $\SL(2,\R)$. We find the analogues of
the cusp form $\Delta$ for the groups $\Gamma_0(f)^+$.
Categories:11F03, 11F22, 30F35 

27. CMB 2008 (vol 51 pp. 481)
 Bayart, Frédéric

Universal Inner Functions on the Ball
It is shown that given any sequence of automorphisms $(\phi_k)_k$ of the
unit ball $\bn$ of $\cn$ such that $\\phi_k(0)\$ tends to $1$,
there exists an inner function
$I$ such that the family of ``nonEuclidean translates"
$(I\circ\phi_k)_k$ is locally uniformly dense in the unit ball of
$H^\infty(\bn)$.
Keywords:inner functions, automorphisms of the ball, universality Categories:32A35, 30D50, 47B38 

28. CMB 2008 (vol 51 pp. 497)
 Borwein, Peter; Choi, KwokKwong Stephen; Mercer, Idris

Expected Norms of ZeroOne Polynomials
Let $\cA_n = \big\{ a_0 + a_1 z + \cdots + a_{n1}z^{n1} : a_j \in \{0, 1 \
} \big\}$, whose elements are called \emf{zeroone polynomials}
and correspond naturally to the $2^n$ subsets of $[n] := \{ 0, 1,
\ldots, n1 \}$. We also let $\cA_{n,m} = \{ \alf(z) \in \cA_n :
\alf(1) = m \}$, whose elements correspond to the ${n \choose m}$
subsets of~$[n]$ of size~$m$, and let $\cB_n = \cA_{n+1} \setminus
\cA_n$, whose elements are the zeroone polynomials of degree
exactly~$n$.
Many researchers have studied norms of polynomials with restricted
coefficients. Using $\norm{\alf}_p$ to denote the usual $L_p$ norm
of~$\alf$ on the unit circle, one easily sees that $\alf(z) = a_0 +
a_1 z + \cdots + a_N z^N \in \bR[z]$ satisfies $\norm{\alf}_2^2 = c_0$
and $\norm{\alf}_4^4 = c_0^2 + 2(c_1^2 + \cdots + c_N^2)$, where $c_k
:= \sum_{j=0}^{Nk} a_j a_{j+k}$ for $0 \le k \le N$.
If $\alf(z) \in \cA_{n,m}$, say $\alf(z) = z^{\beta_1} + \cdots +
z^{\beta_m}$ where $\beta_1 < \cdots < \beta_m$, then $c_k$ is the
number of times $k$ appears as a difference $\beta_i  \beta_j$. The
condition that $\alf \in \cA_{n,m}$ satisfies $c_k \in \{0,1\}$ for $1
\le k \le n1$ is thus equivalent to the condition that $\{ \beta_1,
\ldots, \beta_m \}$ is a \emf{Sidon set} (meaning all differences of
pairs of elements are distinct).
In this paper, we find the average of~$\\alf\_4^4$ over $\alf \in
\cA_n$, $\alf \in \cB_n$, and $\alf \in \cA_{n,m}$. We further show
that our expression for the average of~$\\alf\_4^4$ over~$\cA_{n,m}$
yields a new proof of the known result: if $m = o(n^{1/4})$ and
$B(n,m)$ denotes the number of Sidon sets of size~$m$ in~$[n]$, then
almost all subsets of~$[n]$ of size~$m$ are Sidon, in the sense that
$\lim_{n \to \infty} B(n,m)/\binom{n}{m} = 1$.
Categories:11B83, 11C08, 30C10 

29. CMB 2008 (vol 51 pp. 334)
30. CMB 2008 (vol 51 pp. 195)
31. CMB 2007 (vol 50 pp. 579)
 Kot, Piotr

$p$Radial Exceptional Sets and Conformal Mappings
For $p>0$ and for a given set $E$ of type $G_{\delta}$ in the boundary
of the unit disc $\partial\mathbb D$ we construct a holomorphic function
$f\in\mathbb O(\mathbb D)$ such that
\[
\int_{\mathbb D\setminus[0,1]E}ft^{p}\,d\mathfrak{L}^{2}<\infty\]
and\[
E=E^{p}(f)=\Bigl\{ z\in\partial\mathbb D:\int_{0}^{1}f(tz)^{p}\,dt=\infty\Bigr\} .\]
In particular if a set $E$ has a measure equal to zero, then a function
$f$ is constructed as integrable with power $p$ on the unit disc $\mathbb D$.
Keywords:boundary behaviour of holomorphic functions, exceptional sets Categories:30B30, 30E25 

32. CMB 2007 (vol 50 pp. 123)
33. CMB 2007 (vol 50 pp. 11)
 Borwein, David; Borwein, Jonathan

van der Pol Expansions of LSeries
We provide concise series representations for various
Lseries integrals. Different techniques are needed below and above
the abscissa of absolute convergence of the underlying Lseries.
Keywords:Dirichlet series integrals, Hurwitz zeta functions, Plancherel theorems, Lseries Categories:11M35, 11M41, 30B50 

34. CMB 2006 (vol 49 pp. 381)
35. CMB 2006 (vol 49 pp. 438)
 Mercer, Idris David

Unimodular Roots of\\ Special Littlewood Polynomials
We call $\alpha(z) = a_0 + a_1 z + \dots + a_{n1} z^{n1}$ a Littlewood
polynomial if $a_j = \pm 1$ for all $j$. We call $\alpha(z)$ selfreciprocal
if $\alpha(z) = z^{n1}\alpha(1/z)$, and call $\alpha(z)$ skewsymmetric if
$n = 2m+1$ and $a_{m+j} = (1)^j a_{mj}$ for all $j$. It has been observed
that Littlewood polynomials with particularly high minimum modulus on
the unit
circle in $\bC$ tend to be skewsymmetric. In this paper, we prove that a
skewsymmetric Littlewood polynomial cannot have any zeros on the unit circle,
as well as providing a new proof of the known result that a selfreciprocal
Littlewood polynomial must have a zero on the unit circle.
Categories:26C10, 30C15, 42A05 

36. CMB 2005 (vol 48 pp. 580)
 Kot, Piotr

Exceptional Sets in Hartogs Domains
Assume that $\Omega$ is a Hartogs domain in $\mathbb{C}^{1+n}$,
defined as $\Omega=\{(z,w)\in\mathbb{C}^{1+n}:z<\mu(w),w\in H\}$, where $H$ is an open set in
$\mathbb{C}^{n}$ and $\mu$ is a continuous function with positive values in $H$ such that $\ln\mu$
is a strongly plurisubharmonic function in $H$. Let $\Omega_{w}=\Omega\cap(\mathbb{C}\times\{w\})$.
For a given set $E$ contained in $H$ of the type $G_{\delta}$ we construct a holomorphic function
$f\in\mathbb{O}(\Omega)$ such that
\[
E=\Bigl\{ w\in\mathbb{C}^{n}:\int_{\Omega_{w}}f(\cdot\,,w)^{2}\,d\mathfrak{L}^{2}=\infty\Bigr\}.
\]
Keywords:boundary behaviour of holomorphic functions,, exceptional sets Category:30B30 

37. CMB 2005 (vol 48 pp. 409)
38. CMB 2004 (vol 47 pp. 17)
 Gorkin, Pamela; Mortini, Raymond

Universal Singular Inner Functions
We show that there exists a singular inner function $S$ which is
universal for noneuclidean translates; that is one for which the set
$\{S(\frac{z+z_n}{1+\bar z_nz}):n\in\mathbb{N}\}$ is locally uniformly dense
in the set of all zerofree holomorphic functions in $\mathbb{D}$ bounded by
one.
Category:30D50 

39. CMB 2004 (vol 47 pp. 152)
40. CMB 2003 (vol 46 pp. 559)
 Marco, Nicolas; Massaneda, Xavier

On Density Conditions for Interpolation in the Ball
In this paper we study interpolating sequences for two related spaces of
holomorphic functions in the unit ball of $\C^n$, $n>1$. We first give density
conditions for a sequence to be interpolating for the class $A^{\infty}$ of
holomorphic functions with polynomial growth. The sufficient condition is
formally identical to the characterizing condition in dimension $1$, whereas the
necessary one goes along the lines of the results given by Li and Taylor for
some spaces of entire functions. In the second part of the paper we show that a
density condition, which for $n=1$ coincides with the characterizing condition
given by Seip, is sufficient for interpolation in the (weighted) Bergman space.
Categories:32A36, 32A38, 30E05 

41. CMB 2003 (vol 46 pp. 95)
 Gauthier, P. M.

Cercles de remplissage for the Riemann Zeta Function
The celebrated theorem of Picard asserts that each nonconstant entire
function assumes every value infinitely often, with at most one
exception. The Riemann zeta function has this Picard behaviour in a
sequence of discs lying in the critical band and whose diameters tend
to zero. According to the Riemann hypothesis, the value zero would be
this (unique) exceptional value.
Keywords:cercles de remplissage, Riemann zeta function Category:30 

42. CMB 2002 (vol 45 pp. 265)
 Nawrocki, Marek

On the Smirnov Class Defined by the Maximal Function
H.~O.~Kim has shown that contrary to the case of
$H^p$space, the Smirnov class $M$ defined by the radial maximal
function is essentially smaller than the classical Smirnov class
of the disk. In the paper we show that these two classes have the
same corresponding locally convex structure, {\it i.e.} they have the
same dual spaces and the same Fr\'echet envelopes. We describe a
general form of a continuous linear functional on $M$ and
multiplier from $M$ into $H^p$, $0 < p \leq \infty$.
Keywords:Smirnov class, maximal radial function, multipliers, dual space, FrÃ©chet envelope Categories:46E10, 30A78, 30A76 

43. CMB 2002 (vol 45 pp. 89)
 Grant, David

On Gunning's Prime Form in Genus $2$
Using a classical generalization of Jacobi's derivative formula, we
give an explicit expression for Gunning's prime form in genus 2 in
terms of theta functions and their derivatives.
Categories:14K25, 30F10 

44. CMB 2002 (vol 45 pp. 154)
 Weitsman, Allen

On the Poisson Integral of Step Functions and Minimal Surfaces
Applications of minimal surface methods are made to obtain information
about univalent harmonic mappings. In the case where the mapping arises
as the Poisson integral of a step function, lower bounds for the number
of zeros of the dilatation are obtained in terms of the geometry of the
image.
Keywords:harmonic mappings, dilatation, minimal surfaces Categories:30C62, 31A05, 31A20, 49Q05 

45. CMB 2002 (vol 45 pp. 36)
46. CMB 2001 (vol 44 pp. 420)
47. CMB 2000 (vol 43 pp. 183)
48. CMB 2000 (vol 43 pp. 115)
 Schmutz Schaller, Paul

Perfect NonExtremal Riemann Surfaces
An infinite family of perfect, nonextremal Riemann surfaces
is constructed, the first examples of this type of surfaces.
The examples are based on normal subgroups of the modular group
$\PSL(2,{\sf Z})$ of level $6$. They provide nonEuclidean
analogues to the existence of perfect, nonextremal positive
definite quadratic forms. The analogy uses the function {\it syst\/}
which associates to every Riemann surface $M$ the length of a systole,
which is a shortest closed geodesic of $M$.
Categories:11H99, 11F06, 30F45 

49. CMB 2000 (vol 43 pp. 105)
50. CMB 1999 (vol 42 pp. 139)