1. CMB 2011 (vol 56 pp. 292)
 Dai, MeiFeng

Quasisymmetrically Minimal Moran Sets
M. Hu and S. Wen considered quasisymmetrically minimal uniform Cantor
sets of Hausdorff dimension $1$, where at the $k$th set one removes
from each interval $I$ a certain number $n_{k}$ of open subintervals
of length $c_{k}I$, leaving $(n_{k}+1)$ closed subintervals of
equal length. Quasisymmetrically Moran sets of Hausdorff dimension $1$
considered in the paper are more general than uniform Cantor sets in
that neither the open subintervals nor the closed subintervals are
required to be of equal length.
Keywords:quasisymmetric, Moran set, Hausdorff dimension Categories:28A80, 54C30 

2. CMB 2011 (vol 56 pp. 354)
 Hare, Kathryn E.; Mendivil, Franklin; Zuberman, Leandro

The Sizes of Rearrangements of Cantor Sets
A linear Cantor set $C$ with zero Lebesgue measure is associated with
the countable collection of the bounded complementary open intervals. A
rearrangment of $C$ has the same lengths of its complementary
intervals, but with different locations. We study the Hausdorff and packing
$h$measures and dimensional properties of the set of all rearrangments of
some given $C$ for general dimension functions $h$. For each set of
complementary lengths, we construct a Cantor set rearrangement which has the
maximal Hausdorff and the minimal packing $h$premeasure, up to a constant.
We also show that if the packing measure of this Cantor set is positive,
then there is a rearrangement which has infinite packing measure.
Keywords:Hausdorff dimension, packing dimension, dimension functions, Cantor sets, cutout set Categories:28A78, 28A80 

3. CMB 2009 (vol 52 pp. 105)
4. CMB 2004 (vol 47 pp. 168)
 Baake, Michael; Sing, Bernd

Kolakoski$(3,1)$ Is a (Deformed) Model Set
Unlike the (classical) Kolakoski sequence on the alphabet $\{1,2\}$, its analogue
on $\{1,3\}$ can be related to a primitive substitution rule. Using this connection,
we prove that the corresponding biinfinite fixed point is a regular generic model set
and thus has a pure point diffraction spectrum. The Kolakoski$(3,1)$ sequence is
then obtained as a deformation, without losing the pure point diffraction property.
Categories:52C23, 37B10, 28A80, 43A25 

5. CMB 2001 (vol 44 pp. 61)
 Kats, B. A.

The Inequalities for Polynomials and Integration over Fractal Arcs
The paper is dealing with determination of the integral $\int_{\gamma}
f \,dz$ along the fractal arc $\gamma$ on the complex plane by terms
of polynomial approximations of the function~$f$. We obtain
inequalities for polynomials and conditions of integrability for
functions from the H\"older, Besov and Slobodetskii spaces.
Categories:26B15, 28A80 
