Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 26D15 ( Inequalities for sums, series and integrals )

  Expand all        Collapse all Results 1 - 6 of 6

1. CMB 2014 (vol 58 pp. 188)

Wirths, Karl Joachim
Telescoping Estimates for Smooth Series
We derive telescoping majorants and minorants for some classes of series and give applications of these results.

Keywords:telescoping series, Stietjes constant, Hardy's formula, Stirling's formula
Categories:26D15, 40A25, 97I30

2. CMB 2011 (vol 55 pp. 355)

Nhan, Nguyen Du Vi; Duc, Dinh Thanh
Convolution Inequalities in $l_p$ Weighted Spaces
Various weighted $l_p$-norm inequalities in convolutions are derived by a simple and general principle whose $l_2$ version was obtained by using the theory of reproducing kernels. Applications to the Riemann zeta function and a difference equation are also considered.

Keywords:inequalities for sums, convolution
Categories:26D15, 44A35

3. CMB 2011 (vol 54 pp. 630)

Fiorenza, Alberto; Gupta, Babita; Jain, Pankaj
Mixed Norm Type Hardy Inequalities
Higher dimensional mixed norm type inequalities involving certain integral operators are characterized in terms of the corresponding lower dimensional inequalities.

Keywords:Hardy inequality, reverse Hardy inequality, mixed norm, Hardy-Steklov operator
Categories:26D10, 26D15

4. CMB 2010 (vol 53 pp. 327)

Luor, Dah-Chin
Multidimensional Exponential Inequalities with Weights
We establish sufficient conditions on the weight functions $u$ and $v$ for the validity of the multidimensional weighted inequality $$ \Bigl(\int_E \Phi(T_k f(x))^q u(x)\,dx\Bigr)^{1/q} \le C \Bigl (\int_E \Phi(f(x))^p v(x)\,dx\Bigr )^{1/p}, $$ where 0<$p$, $q$<$\infty$, $\Phi$ is a logarithmically convex function, and $T_k$ is an integral operator over star-shaped regions. The condition is also necessary for the exponential integral inequality. Moreover, the estimation of $C$ is given and we apply the obtained results to generalize some multidimensional Levin--Cochran-Lee type inequalities.

Keywords:multidimensional inequalities, geometric mean operators, exponential inequalities, star-shaped regions
Categories:26D15, 26D10

5. CMB 2005 (vol 48 pp. 333)

Alzer, Horst
Monotonicity Properties of the Hurwitz Zeta Function
Let $$ \zeta(s,x)=\sum_{n=0}^{\infty}\frac{1}{(n+x)^s} \quad{(s>1,\, x>0)} $$ be the Hurwitz zeta function and let $$ Q(x)=Q(x;\alpha,\beta;a,b)=\frac{(\zeta(\alpha,x))^a}{(\zeta(\beta,x))^b}, $$ where $\alpha, \beta>1$ and $a,b>0$ are real numbers. We prove: (i) The function $Q$ is decreasing on $(0,\infty)$ if{}f $\alpha a-\beta b\geq \max(a-b,0)$. (ii) $Q$ is increasing on $(0,\infty)$ if{}f $\alpha a-\beta b\leq \min(a-b,0)$. An application of part (i) reveals that for all $x>0$ the function $s\mapsto [(s-1)\zeta(s,x)]^{1/(s-1)}$ is decreasing on $(1,\infty)$. This settles a conjecture of Bastien and Rogalski.

Categories:11M35, 26D15

6. CMB 1999 (vol 42 pp. 478)

Pruss, Alexander R.
A Remark On the Moser-Aubin Inequality For Axially Symmetric Functions On the Sphere
Let $\scr S_r$ be the collection of all axially symmetric functions $f$ in the Sobolev space $H^1(\Sph^2)$ such that $\int_{\Sph^2} x_ie^{2f(\mathbf{x})} \, d\omega(\mathbf{x})$ vanishes for $i=1,2,3$. We prove that $$ \inf_{f\in \scr S_r} \frac12 \int_{\Sph^2} |\nabla f|^2 \, d\omega + 2\int_{\Sph^2} f \, d\omega- \log \int_{\Sph^2} e^{2f} \, d\omega > -\oo, $$ and that this infimum is attained. This complements recent work of Feldman, Froese, Ghoussoub and Gui on a conjecture of Chang and Yang concerning the Moser-Aubin inequality.

Keywords:Moser inequality, borderline Sobolev inequalities, axially symmetric functions
Categories:26D15, 58G30

© Canadian Mathematical Society, 2015 :