CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 26D10 ( Inequalities involving derivatives and differential and integral operators )

  Expand all        Collapse all Results 1 - 4 of 4

1. CMB 2011 (vol 54 pp. 630)

Fiorenza, Alberto; Gupta, Babita; Jain, Pankaj
Mixed Norm Type Hardy Inequalities
Higher dimensional mixed norm type inequalities involving certain integral operators are characterized in terms of the corresponding lower dimensional inequalities.

Keywords:Hardy inequality, reverse Hardy inequality, mixed norm, Hardy-Steklov operator
Categories:26D10, 26D15

2. CMB 2010 (vol 53 pp. 327)

Luor, Dah-Chin
Multidimensional Exponential Inequalities with Weights
We establish sufficient conditions on the weight functions $u$ and $v$ for the validity of the multidimensional weighted inequality $$ \Bigl(\int_E \Phi(T_k f(x))^q u(x)\,dx\Bigr)^{1/q} \le C \Bigl (\int_E \Phi(f(x))^p v(x)\,dx\Bigr )^{1/p}, $$ where 0<$p$, $q$<$\infty$, $\Phi$ is a logarithmically convex function, and $T_k$ is an integral operator over star-shaped regions. The condition is also necessary for the exponential integral inequality. Moreover, the estimation of $C$ is given and we apply the obtained results to generalize some multidimensional Levin--Cochran-Lee type inequalities.

Keywords:multidimensional inequalities, geometric mean operators, exponential inequalities, star-shaped regions
Categories:26D15, 26D10

3. CMB 2006 (vol 49 pp. 82)

Gogatishvili, Amiran; Pick, Luboš
Embeddings and Duality Theorem for Weak Classical Lorentz Spaces
We characterize the weight functions $u,v,w$ on $(0,\infty)$ such that $$ \left(\int_0^\infty f^{*}(t)^ qw(t)\,dt\right)^{1/q} \leq C \sup_{t\in(0,\infty)}f^{**}_u(t)v(t), $$ where $$ f^{**}_u(t):=\left(\int_{0}^{t}u(s)\,ds\right)^{-1} \int_{0}^{t}f^*(s)u(s)\,ds. $$ As an application we present a~new simple characterization of the associate space to the space $\Gamma^ \infty(v)$, determined by the norm $$ \|f\|_{\Gamma^ \infty(v)}=\sup_{t\in(0,\infty)}f^{**}(t)v(t), $$ where $$ f^{**}(t):=\frac1t\int_{0}^{t}f^*(s)\,ds. $$

Keywords:Discretizing sequence, antidiscretization, classical Lorentz spaces, weak Lorentz spaces, embeddings, duality, Hardy's inequality
Categories:26D10, 46E20

4. CMB 2004 (vol 47 pp. 540)

Jain, Pankaj; Jain, Pawan K.; Gupta, Babita
Compactness of Hardy-Type Operators over Star-Shaped Regions in $\mathbb{R}^N$
We study a compactness property of the operators between weighted Lebesgue spaces that average a function over certain domains involving a star-shaped region. The cases covered are (i) when the average is taken over a difference of two dilations of a star-shaped region in $\RR^N$, and (ii) when the average is taken over all dilations of star-shaped regions in $\RR^N$. These cases include, respectively, the average over annuli and the average over balls centered at origin.

Keywords:Hardy operator, Hardy-Steklov operator, compactness, boundedness, star-shaped regions
Categories:46E35, 26D10

© Canadian Mathematical Society, 2014 : https://cms.math.ca/