Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 22D15 ( Group algebras of locally compact groups )

  Expand all        Collapse all Results 1 - 2 of 2

1. CMB 2008 (vol 51 pp. 60)

Janzen, David
F{\o}lner Nets for Semidirect Products of Amenable Groups
For unimodular semidirect products of locally compact amenable groups $N$ and $H$, we show that one can always construct a F{\o}lner net of the form $(A_\alpha \times B_\beta)$ for $G$, where $(A_\alpha)$ is a strong form of F{\o}lner net for $N$ and $(B_\beta)$ is any F{\o}lner net for $H$. Applications to the Heisenberg and Euclidean motion groups are provided.

Categories:22D05, 43A07, 22D15, 43A20

2. CMB 2005 (vol 48 pp. 505)

Bouikhalene, Belaid
On the Generalized d'Alembert's and Wilson's Functional Equations on a Compact group
Let $G$ be a compact group. Let $\sigma$ be a continuous involution of $G$. In this paper, we are concerned by the following functional equation $$\int_{G}f(xtyt^{-1})\,dt+\int_{G}f(xt\sigma(y)t^{-1})\,dt=2g(x)h(y), \quad x, y \in G,$$ where $f, g, h \colonG \mapsto \mathbb{C}$, to be determined, are complex continuous functions on $G$ such that $f$ is central. This equation generalizes d'Alembert's and Wilson's functional equations. We show that the solutions are expressed by means of characters of irreducible, continuous and unitary representations of the group $G$.

Keywords:Compact groups, Functional equations, Central functions, Lie, groups, Invariant differential operators.
Categories:39B32, 39B42, 22D10, 22D12, 22D15

© Canadian Mathematical Society, 2014 :