1. CMB 2013 (vol 57 pp. 357)
 Lauret, Emilio A.

Representation Equivalent Bieberbach Groups and Strongly Isospectral Flat Manifolds
Let $\Gamma_1$ and $\Gamma_2$ be Bieberbach groups contained in the
full isometry group $G$ of $\mathbb{R}^n$.
We prove that if the compact flat manifolds $\Gamma_1\backslash\mathbb{R}^n$ and
$\Gamma_2\backslash\mathbb{R}^n$ are strongly isospectral then the Bieberbach groups
$\Gamma_1$ and $\Gamma_2$ are representation equivalent, that is, the
right regular representations $L^2(\Gamma_1\backslash G)$ and
$L^2(\Gamma_2\backslash G)$ are unitarily equivalent.
Keywords:representation equivalent, strongly isospectrality, compact flat manifolds Categories:58J53, 22D10 

2. CMB 2005 (vol 48 pp. 505)
 Bouikhalene, Belaid

On the Generalized d'Alembert's and Wilson's Functional Equations on a Compact group
Let $G$ be a compact group. Let $\sigma$ be a continuous involution
of $G$. In this paper, we are
concerned by the following functional equation
$$\int_{G}f(xtyt^{1})\,dt+\int_{G}f(xt\sigma(y)t^{1})\,dt=2g(x)h(y), \quad
x, y \in G,$$ where $f, g, h \colonG \mapsto \mathbb{C}$, to be
determined, are complex continuous functions on $G$ such that $f$ is
central. This equation generalizes d'Alembert's and Wilson's
functional equations. We show that the solutions are expressed by
means of characters of irreducible, continuous and unitary
representations of the group $G$.
Keywords:Compact groups, Functional equations, Central functions, Lie, groups, Invariant differential operators. Categories:39B32, 39B42, 22D10, 22D12, 22D15 

3. CMB 2004 (vol 47 pp. 215)
 Jaworski, Wojciech

Countable Amenable Identity Excluding Groups
A discrete group $G$ is called \emph{identity excluding\/}
if the only irreducible
unitary representation of $G$ which weakly contains the $1$dimensional identity
representation is the $1$dimensional identity representation itself. Given a
unitary representation $\pi$ of $G$ and a probability measure $\mu$ on $G$, let
$P_\mu$ denote the $\mu$average $\int\pi(g) \mu(dg)$. The goal of this article
is twofold: (1)~to study the asymptotic behaviour of the powers $P_\mu^n$, and
(2)~to provide a characterization of countable amenable identity excluding groups.
We prove that for every adapted probability measure $\mu$ on an identity excluding
group and every unitary representation $\pi$ there exists and orthogonal projection
$E_\mu$ onto a $\pi$invariant subspace such that $s$$\lim_{n\to\infty}\bigl(P_\mu^n
\pi(a)^nE_\mu\bigr)=0$ for every $a\in\supp\mu$. This also remains true for suitably
defined identity excluding locally compact groups. We show that the class of countable
amenable identity excluding groups coincides with the class of $\FC$hypercentral
groups; in the finitely generated case this is precisely the class of groups of
polynomial growth. We also establish that every adapted random walk on a countable
amenable identity excluding group is ergodic.
Categories:22D10, 22D40, 43A05, 47A35, 60B15, 60J50 
