CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 20J06 ( Cohomology of groups )

  Expand all        Collapse all Results 1 - 4 of 4

1. CMB Online first

Carlson, Jon F.; Chebolu, Sunil K.; Mináč, Ján
Ghosts and strong ghosts in the stable category
Suppose that $G$ is a finite group and $k$ is a field of characteristic $p\gt 0$. A ghost map is a map in the stable category of finitely generated $kG$-modules which induces the zero map in Tate cohomology in all degrees. In an earlier paper we showed that the thick subcategory generated by the trivial module has no nonzero ghost maps if and only if the Sylow $p$-subgroup of $G$ is cyclic of order 2 or 3. In this paper we introduce and study variations of ghost maps. In particular, we consider the behavior of ghost maps under restriction and induction functors. We find all groups satisfying a strong form of Freyd's generating hypothesis and show that ghosts can be detected on a finite range of degrees of Tate cohomology. We also consider maps which mimic ghosts in high degrees.

Keywords:Tate cohomology, ghost maps, stable module category, almost split sequence, periodic cohomology
Categories:20C20, 20J06, 55P42

2. CMB 2011 (vol 55 pp. 48)

Chebolu, Sunil K.; Christensen, J. Daniel; Mináč, Ján
Freyd's Generating Hypothesis for Groups with Periodic Cohomology
Let $G$ be a finite group, and let $k$ be a field whose characteristic $p$ divides the order of $G$. Freyd's generating hypothesis for the stable module category of $G$ is the statement that a map between finite-dimensional $kG$-modules in the thick subcategory generated by $k$ factors through a projective if the induced map on Tate cohomology is trivial. We show that if $G$ has periodic cohomology, then the generating hypothesis holds if and only if the Sylow $p$-subgroup of $G$ is $C_2$ or $C_3$. We also give some other conditions that are equivalent to the GH for groups with periodic cohomology.

Keywords:Tate cohomology, generating hypothesis, stable module category, ghost map, principal block, thick subcategory, periodic cohomology
Categories:20C20, 20J06, 55P42

3. CMB 2008 (vol 51 pp. 81)

Kassel, Christian
Homotopy Formulas for Cyclic Groups Acting on Rings
The positive cohomology groups of a finite group acting on a ring vanish when the ring has a norm one element. In this note we give explicit homotopies on the level of cochains when the group is cyclic, which allows us to express any cocycle of a cyclic group as the coboundary of an explicit cochain. The formulas in this note are closely related to the effective problems considered in previous joint work with Eli Aljadeff.

Keywords:group cohomology, norm map, cyclic group, homotopy
Categories:20J06, 20K01, 16W22, 18G35

4. CMB 1997 (vol 40 pp. 341)

Lee, Hyang-Sook
The stable and unstable types of classifying spaces
The main purpose of this paper is to study groups $G_1$, $G_2$ such that $H^\ast(BG_1,{\bf Z}/p)$ is isomorphic to $H^\ast(BG_2,{\bf Z}/p)$ in ${\cal U}$, the category of unstable modules over the Steenrod algebra ${\cal A}$, but not isomorphic as graded algebras over ${\bf Z}/p$.

Categories:55R35, 20J06

© Canadian Mathematical Society, 2016 : https://cms.math.ca/