Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 20J06 ( Cohomology of groups )

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB 2011 (vol 55 pp. 48)

Chebolu, Sunil K.; Christensen, J. Daniel; Mináč, Ján
Freyd's Generating Hypothesis for Groups with Periodic Cohomology
Let $G$ be a finite group, and let $k$ be a field whose characteristic $p$ divides the order of $G$. Freyd's generating hypothesis for the stable module category of $G$ is the statement that a map between finite-dimensional $kG$-modules in the thick subcategory generated by $k$ factors through a projective if the induced map on Tate cohomology is trivial. We show that if $G$ has periodic cohomology, then the generating hypothesis holds if and only if the Sylow $p$-subgroup of $G$ is $C_2$ or $C_3$. We also give some other conditions that are equivalent to the GH for groups with periodic cohomology.

Keywords:Tate cohomology, generating hypothesis, stable module category, ghost map, principal block, thick subcategory, periodic cohomology
Categories:20C20, 20J06, 55P42

2. CMB 2008 (vol 51 pp. 81)

Kassel, Christian
Homotopy Formulas for Cyclic Groups Acting on Rings
The positive cohomology groups of a finite group acting on a ring vanish when the ring has a norm one element. In this note we give explicit homotopies on the level of cochains when the group is cyclic, which allows us to express any cocycle of a cyclic group as the coboundary of an explicit cochain. The formulas in this note are closely related to the effective problems considered in previous joint work with Eli Aljadeff.

Keywords:group cohomology, norm map, cyclic group, homotopy
Categories:20J06, 20K01, 16W22, 18G35

3. CMB 1997 (vol 40 pp. 341)

Lee, Hyang-Sook
The stable and unstable types of classifying spaces
The main purpose of this paper is to study groups $G_1$, $G_2$ such that $H^\ast(BG_1,{\bf Z}/p)$ is isomorphic to $H^\ast(BG_2,{\bf Z}/p)$ in ${\cal U}$, the category of unstable modules over the Steenrod algebra ${\cal A}$, but not isomorphic as graded algebras over ${\bf Z}/p$.

Categories:55R35, 20J06

© Canadian Mathematical Society, 2014 :