Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 20E45 ( Conjugacy classes )

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB Online first

Beardon, Alan F.
Non-discrete frieze groups
The classification of Euclidean frieze groups into seven conjugacy classes is well known, and many articles on recreational mathematics contain frieze patterns that illustrate these classes. However, it is only possible to draw these patterns because the subgroup of translations that leave the pattern invariant is (by definition) cyclic, and hence discrete. In this paper we classify the conjugacy classes of frieze groups that contain a non-discrete subgroup of translations, and clearly these groups cannot be represented pictorially in any practical way. In addition, this discussion sheds light on why there are only seven conjugacy classes in the classical case.

Keywords:frieze groups, isometry groups
Categories:51M04, 51N30, 20E45

2. CMB 2014 (vol 58 pp. 105)

Hossein-Zadeh, Samaneh; Iranmanesh, Ali; Hosseinzadeh, Mohammad Ali; Lewis, Mark L.
On Graphs Associated with Character Degrees and Conjugacy Class Sizes of Direct Products of Finite Groups
The prime vertex graph, $\Delta (X)$, and the common divisor graph, $\Gamma (X)$, are two graphs that have been defined on a set of positive integers $X$. Some properties of these graphs have been studied in the cases where either $X$ is the set of character degrees of a group or $X$ is the set of conjugacy class sizes of a group. In this paper, we gather some results on these graphs arising in the context of direct product of two groups.

Keywords:prime vertex graph, common divisor graph, character degree, class sizes, graph operation
Categories:20E45, 05C25, 05C76

3. CMB 2012 (vol 57 pp. 132)

Mubeena, T.; Sankaran, P.
Twisted Conjugacy Classes in Abelian Extensions of Certain Linear Groups
Given a group automorphism $\phi:\Gamma\longrightarrow \Gamma$, one has an action of $\Gamma$ on itself by $\phi$-twisted conjugacy, namely, $g.x=gx\phi(g^{-1})$. The orbits of this action are called $\phi$-twisted conjugacy classes. One says that $\Gamma$ has the $R_\infty$-property if there are infinitely many $\phi$-twisted conjugacy classes for every automorphism $\phi$ of $\Gamma$. In this paper we show that $\operatorname{SL}(n,\mathbb{Z})$ and its congruence subgroups have the $R_\infty$-property. Further we show that any (countable) abelian extension of $\Gamma$ has the $R_\infty$-property where $\Gamma$ is a torsion free non-elementary hyperbolic group, or $\operatorname{SL}(n,\mathbb{Z}), \operatorname{Sp}(2n,\mathbb{Z})$ or a principal congruence subgroup of $\operatorname{SL}(n,\mathbb{Z})$ or the fundamental group of a complete Riemannian manifold of constant negative curvature.

Keywords:twisted conjugacy classes, hyperbolic groups, lattices in Lie groups

© Canadian Mathematical Society, 2015 :