Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 20E45 ( Conjugacy classes )

  Expand all        Collapse all Results 1 - 2 of 2

1. CMB 2014 (vol 58 pp. 105)

Hossein-Zadeh, Samaneh; Iranmanesh, Ali; Hosseinzadeh, Mohammad Ali; Lewis, Mark L.
On Graphs Associated with Character Degrees and Conjugacy Class Sizes of Direct Products of Finite Groups
The prime vertex graph, $\Delta (X)$, and the common divisor graph, $\Gamma (X)$, are two graphs that have been defined on a set of positive integers $X$. Some properties of these graphs have been studied in the cases where either $X$ is the set of character degrees of a group or $X$ is the set of conjugacy class sizes of a group. In this paper, we gather some results on these graphs arising in the context of direct product of two groups.

Keywords:prime vertex graph, common divisor graph, character degree, class sizes, graph operation
Categories:20E45, 05C25, 05C76

2. CMB 2012 (vol 57 pp. 132)

Mubeena, T.; Sankaran, P.
Twisted Conjugacy Classes in Abelian Extensions of Certain Linear Groups
Given a group automorphism $\phi:\Gamma\longrightarrow \Gamma$, one has an action of $\Gamma$ on itself by $\phi$-twisted conjugacy, namely, $g.x=gx\phi(g^{-1})$. The orbits of this action are called $\phi$-twisted conjugacy classes. One says that $\Gamma$ has the $R_\infty$-property if there are infinitely many $\phi$-twisted conjugacy classes for every automorphism $\phi$ of $\Gamma$. In this paper we show that $\operatorname{SL}(n,\mathbb{Z})$ and its congruence subgroups have the $R_\infty$-property. Further we show that any (countable) abelian extension of $\Gamma$ has the $R_\infty$-property where $\Gamma$ is a torsion free non-elementary hyperbolic group, or $\operatorname{SL}(n,\mathbb{Z}), \operatorname{Sp}(2n,\mathbb{Z})$ or a principal congruence subgroup of $\operatorname{SL}(n,\mathbb{Z})$ or the fundamental group of a complete Riemannian manifold of constant negative curvature.

Keywords:twisted conjugacy classes, hyperbolic groups, lattices in Lie groups

© Canadian Mathematical Society, 2015 :