Expand all Collapse all | Results 1 - 6 of 6 |
1. CMB 2012 (vol 57 pp. 326)
On Zero-divisors in Group Rings of Groups with Torsion Nontrivial pairs of zero-divisors in group rings are
introduced and discussed. A problem on the existence of nontrivial
pairs of zero-divisors in group rings of free Burnside groups of odd
exponent $n \gg 1$ is solved in the affirmative. Nontrivial pairs of
zero-divisors are also found in group rings of free products of groups
with torsion.
Keywords:Burnside groups, free products of groups, group rings, zero-divisors Categories:20C07, 20E06, 20F05, , 20F50 |
2. CMB 2003 (vol 46 pp. 310)
Second Order Dehn Functions of Asynchronously Automatic Groups Upper bounds of second order Dehn functions of asynchronously
automatic groups are obtained.
Keywords:second order Dehn function, combing, asynchronously automatic group Categories:20E06, 20F05, 57M05 |
3. CMB 2003 (vol 46 pp. 122)
On Certain Finitely Generated Subgroups of Groups Which Split Define a group $G$ to be in the class $\mathcal{S}$ if for any
finitely generated subgroup $K$ of $G$ having the property that
there is a positive integer $n$ such that $g^n \in K$ for all
$g\in G$, $K$ has finite index in $G$. We show that a free
product with amalgamation $A*_C B$ and an $\HNN$ group $A *_C$ belong
to $\mathcal{S}$, if $C$ is in $\mathcal{S}$ and every subgroup of
$C$ is finitely generated.
Keywords:free product with amalgamation, $\HNN$ group, graph of groups, fundamental group Categories:20E06, 20E08, 57M07 |
4. CMB 1999 (vol 42 pp. 335)
Cyclic Subgroup Separability of HNN-Extensions with Cyclic Associated Subgroups We derive a necessary and sufficient condition for HNN-extensions
of cyclic subgroup separable groups with cyclic associated
subgroups to be cyclic subgroup separable. Applying this, we
explicitly characterize the residual finiteness and the cyclic
subgroup separability of HNN-extensions of abelian groups with
cyclic associated subgroups. We also consider these residual
properties of HNN-extensions of nilpotent groups with cyclic
associated subgroups.
Keywords:HNN-extension, nilpotent groups, cyclic subgroup separable $(\pi_c)$, residually finite Categories:20E26, 20E06, 20F10 |
5. CMB 1998 (vol 41 pp. 423)
Free products with amalgamation and $\lowercase{p}$-adic Lie groups Using the theory of $p$-adic Lie groups we give conditions for a
finitely generated group to admit a splitting as a non-trivial
free product with amalgamation. This can be viewed as an extension
of a theorem of Bass.
Category:20E06 |
6. CMB 1997 (vol 40 pp. 330)
Amalgamated products and the Howson property We show that if $A$ is a torsion-free word hyperbolic group
which belongs to class $(Q)$, that is all finitely generated subgroups of $A$
are quasiconvex in $A$, then any maximal cyclic subgroup $U$ of $A$ is a Burns
subgroup of $A$. This, in particular, implies that if $B$ is a Howson group
(that is the intersection of any two finitely generated subgroups is finitely
generated) then $A\ast_U B$, $\langle A,t \mid U^t=V\rangle$ are also Howson
groups. Finitely generated free groups, fundamental groups of closed
hyperbolic surfaces and some interesting $3$-manifold groups are known to
belong to class $(Q)$ and our theorem applies to them. We also describe a
large class of word hyperbolic groups which are not Howson.
Categories:20E06, 20E07, 20F32 |