Expand all Collapse all | Results 1 - 4 of 4 |
1. CMB Online first
On Finite Groups with Dismantlable Subgroup Lattices In this note we study the finite groups whose subgroup
lattices are dismantlable.
Keywords:finite groups, subgroup lattices, dismantlable lattices, planar lattices, crowns Categories:20D30, 20D60, 20E15 |
2. CMB 2010 (vol 54 pp. 39)
Elements in a Numerical Semigroup with Factorizations of the Same Length
Questions concerning the lengths of factorizations into irreducible
elements in numerical monoids
have gained much attention in the recent literature. In this note,
we show that a numerical monoid has an element with two different
irreducible factorizations of the same length if and only if its
embedding dimension is greater than
two. We find formulas in embedding dimension three for the smallest
element with two different irreducible factorizations of the same
length and the largest element whose different irreducible
factorizations all have distinct lengths. We show that these
formulas do not naturally extend to higher embedding
dimensions.
Keywords:numerical monoid, numerical semigroup, non-unique factorization Categories:20M14, 20D60, 11B75 |
3. CMB 2007 (vol 50 pp. 632)
Transformations and Colorings of Groups Let $G$ be a compact topological group and let $f\colon G\to G$ be a
continuous transformation of $G$. Define $f^*\colon G\to G$ by
$f^*(x)=f(x^{-1})x$ and let $\mu=\mu_G$ be Haar measure on $G$. Assume
that $H=\Imag f^*$ is a subgroup of $G$ and for every
measurable $C\subseteq H$,
$\mu_G((f^*)^{-1}(C))=\mu_H(C)$. Then for every measurable
$C\subseteq G$, there exist $S\subseteq C$ and $g\in G$ such that
$f(Sg^{-1})\subseteq Cg^{-1}$ and $\mu(S)\ge(\mu(C))^2$.
Keywords:compact topological group, continuous transformation, endomorphism, Ramsey theoryinversion, Categories:05D10, 20D60, 22A10 |
4. CMB 2004 (vol 47 pp. 530)
A Characterization of $ PSU_{11}(q)$ Order components of a finite simple group were introduced in [4].
It was proved that some non-abelian simple groups are uniquely determined
by their order components. As the main result of this paper, we
show that groups $PSU_{11}(q)$ are also uniquely determined by
their order components. As corollaries of this result, the
validity of a conjecture of J. G. Thompson and a conjecture of W.
Shi and J. Bi both on $PSU_{11}(q)$ are obtained.
Keywords:Prime graph, order component, finite group,simple group Categories:20D08, 20D05, 20D60 |