Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 20C30 ( Representations of finite symmetric groups )

  Expand all        Collapse all Results 1 - 5 of 5

1. CMB Online first

Liu, Ye
On chromatic functors and stable partitions of graphs
The chromatic functor of a simple graph is a functorization of the chromatic polynomial. M. Yoshinaga showed that two finite graphs have isomorphic chromatic functors if and only if they have the same chromatic polynomial. The key ingredient in the proof is the use of stable partitions of graphs. The latter is shown to be closely related to chromatic functors. In this note, we further investigate some interesting properties of chromatic functors associated to simple graphs using stable partitions. Our first result is the determination of the group of natural automorphisms of the chromatic functor, which is in general a larger group than the automorphism group of the graph. The second result is that the composition of the chromatic functor associated to a finite graph restricted to the category $\mathrm{FI}$ of finite sets and injections with the free functor into the category of complex vector spaces yields a consistent sequence of representations of symmetric groups which is representation stable in the sense of Church-Farb.

Keywords:chromatic functor, stable partition, representation stability
Categories:05C15, 20C30

2. CMB 2011 (vol 55 pp. 673)

Aizenbud, Avraham; Gourevitch, Dmitry
Multiplicity Free Jacquet Modules
Let $F$ be a non-Archimedean local field or a finite field. Let $n$ be a natural number and $k$ be $1$ or $2$. Consider $G:=\operatorname{GL}_{n+k}(F)$ and let $M:=\operatorname{GL}_n(F) \times \operatorname{GL}_k(F)\lt G$ be a maximal Levi subgroup. Let $U\lt G$ be the corresponding unipotent subgroup and let $P=MU$ be the corresponding parabolic subgroup. Let $J:=J_M^G: \mathcal{M}(G) \to \mathcal{M}(M)$ be the Jacquet functor, i.e., the functor of coinvariants with respect to $U$. In this paper we prove that $J$ is a multiplicity free functor, i.e., $\dim \operatorname{Hom}_M(J(\pi),\rho)\leq 1$, for any irreducible representations $\pi$ of $G$ and $\rho$ of $M$. We adapt the classical method of Gelfand and Kazhdan, which proves the ``multiplicity free" property of certain representations to prove the ``multiplicity free" property of certain functors. At the end we discuss whether other Jacquet functors are multiplicity free.

Keywords:multiplicity one, Gelfand pair, invariant distribution, finite group
Categories:20G05, 20C30, 20C33, 46F10, 47A67

3. CMB 2011 (vol 54 pp. 297)

Johnson, Marianne; Stöhr, Ralph
Lie Powers and Pseudo-Idempotents
We give a new factorisation of the classical Dynkin operator, an element of the integral group ring of the symmetric group that facilitates projections of tensor powers onto Lie powers. As an application we show that the iterated Lie power $L_2(L_n)$ is a module direct summand of the Lie power $L_{2n}$ whenever the characteristic of the ground field does not divide $n$. An explicit projection of the latter onto the former is exhibited in this case.

Categories:17B01, 20C30

4. CMB 2009 (vol 52 pp. 9)

Chassé, Dominique; Saint-Aubin, Yvan
On the Spectrum of an $n!\times n!$ Matrix Originating from Statistical Mechanics
Let $R_n(\alpha)$ be the $n!\times n!$ matrix whose matrix elements $[R_n(\alpha)]_{\sigma\rho}$, with $\sigma$ and $\rho$ in the symmetric group $\sn$, are $\alpha^{\ell(\sigma\rho^{-1})}$ with $0<\alpha<1$, where $\ell(\pi)$ denotes the number of cycles in $\pi\in \sn$. We give the spectrum of $R_n$ and show that the ratio of the largest eigenvalue $\lambda_0$ to the second largest one (in absolute value) increases as a positive power of $n$ as $n\rightarrow \infty$.

Keywords:symmetric group, representation theory, eigenvalue, statistical physics
Categories:20B30, 20C30, 15A18, 82B20, 82B28

5. CMB 2008 (vol 51 pp. 584)

Purbhoo, Kevin; Willigenburg, Stephanie van
On Tensor Products of Polynomial Representations
We determine the necessary and sufficient combinatorial conditions for which the tensor product of two irreducible polynomial representations of $\GL(n,\mathbb{C})$ is isomorphic to another. As a consequence we discover families of Littlewood--Richardson coefficients that are non-zero, and a condition on Schur non-negativity.

Keywords:polynomial representation, symmetric function, Littlewood--Richardson coefficient, Schur non-negative
Categories:05E05, 05E10, 20C30

© Canadian Mathematical Society, 2016 :