76. CMB 2004 (vol 47 pp. 298)
 Yahaghi, Bamdad R.

Near Triangularizability Implies Triangularizability
In this paper we consider collections of
compact operators on a real or
complex Banach space including linear operators
on finitedimensional vector spaces. We show
that such a collection is simultaneously
triangularizable if and only if it is arbitrarily
close to a simultaneously triangularizable
collection of compact operators. As an application
of these results we obtain an invariant subspace
theorem for certain bounded operators. We
further prove that in finite dimensions near
reducibility implies reducibility whenever
the ground field is $\BR$ or $\BC$.
Keywords:Linear transformation, Compact operator,, Triangularizability, Banach space, Hilbert, space Categories:47A15, 47D03, 20M20 

77. CMB 2004 (vol 47 pp. 161)
78. CMB 2003 (vol 46 pp. 509)
 Benson, David J.; Kumjian, Alex; Phillips, N. Christopher

Symmetries of Kirchberg Algebras
Let $G_0$ and $G_1$ be countable abelian groups. Let $\gamma_i$ be an
automorphism of $G_i$ of order two. Then there exists a unital
Kirchberg algebra $A$ satisfying the Universal Coefficient Theorem and
with $[1_A] = 0$ in $K_0 (A)$, and an automorphism $\alpha \in
\Aut(A)$ of order two, such that $K_0 (A) \cong G_0$, such that $K_1
(A) \cong G_1$, and such that $\alpha_* \colon K_i (A) \to K_i (A)$ is
$\gamma_i$. As a consequence, we prove that every
$\mathbb{Z}_2$graded countable module over the representation ring $R
(\mathbb{Z}_2)$ of $\mathbb{Z}_2$ is isomorphic to the equivariant
$K$theory $K^{\mathbb{Z}_2} (A)$ for some action of $\mathbb{Z}_2$ on
a unital Kirchberg algebra~$A$.
Along the way, we prove that every not necessarily finitely generated
$\mathbb{Z} [\mathbb{Z}_2]$module which is free as a
$\mathbb{Z}$module has a direct sum decomposition with only three
kinds of summands, namely $\mathbb{Z} [\mathbb{Z}_2]$ itself and
$\mathbb{Z}$ on which the nontrivial element of $\mathbb{Z}_2$ acts
either trivially or by multiplication by $1$.
Categories:20C10, 46L55, 19K99, 19L47, 46L40, 46L80 

79. CMB 2003 (vol 46 pp. 332)
 Đoković, Dragomir Z.; Tam, TinYau

Some Questions about Semisimple Lie Groups Originating in Matrix Theory
We generalize the wellknown result that a square traceless complex
matrix is unitarily similar to a matrix with zero diagonal to
arbitrary connected semisimple complex Lie groups $G$ and their Lie
algebras $\mathfrak{g}$ under the action of a maximal compact subgroup
$K$ of $G$. We also introduce a natural partial order on
$\mathfrak{g}$: $x\le y$ if $f(K\cdot x) \subseteq f(K\cdot y)$ for
all $f\in \mathfrak{g}^*$, the complex dual of $\mathfrak{g}$. This
partial order is $K$invariant and induces a partial order on the
orbit space $\mathfrak{g}/K$. We prove that, under some restrictions
on $\mathfrak{g}$, the set $f(K\cdot x)$ is starshaped with respect
to the origin.
Categories:15A45, 20G20, 22E60 

80. CMB 2003 (vol 46 pp. 268)
 Puls, Michael J.

Group Cohomology and $L^p$Cohomology of Finitely Generated Groups
Let $G$ be a finitely generated, infinite group, let $p>1$, and let
$L^p(G)$ denote the Banach space $\{ \sum_{x\in G} a_xx \mid \sum_{x\in
G} a_x ^p < \infty \}$. In this paper we will study the first
cohomology group of $G$ with coefficients in $L^p(G)$, and the first
reduced $L^p$cohomology space of $G$. Most of our results will be for a
class of groups that contains all finitely generated, infinite nilpotent
groups.
Keywords:group cohomology, $L^p$cohomology, central element of infinite order, harmonic function, continuous linear functional Categories:43A15, 20F65, 20F18 

81. CMB 2003 (vol 46 pp. 310)
82. CMB 2003 (vol 46 pp. 299)
83. CMB 2003 (vol 46 pp. 204)
 Levy, Jason

Rationality and Orbit Closures
Suppose we are given a finitedimensional vector space $V$ equipped
with an $F$rational action of a linearly algebraic group $G$, with
$F$ a characteristic zero field. We conjecture the following: to each
vector $v\in V(F)$ there corresponds a canonical $G(F)$orbit of
semisimple vectors of $V$. In the case of the adjoint action, this
orbit is the $G(F)$orbit of the semisimple part of $v$, so this
conjecture can be considered a generalization of the Jordan
decomposition. We prove some cases of the conjecture.
Categories:14L24, 20G15 

84. CMB 2003 (vol 46 pp. 140)
85. CMB 2003 (vol 46 pp. 122)
 Moon, Myoungho

On Certain Finitely Generated Subgroups of Groups Which Split
Define a group $G$ to be in the class $\mathcal{S}$ if for any
finitely generated subgroup $K$ of $G$ having the property that
there is a positive integer $n$ such that $g^n \in K$ for all
$g\in G$, $K$ has finite index in $G$. We show that a free
product with amalgamation $A*_C B$ and an $\HNN$ group $A *_C$ belong
to $\mathcal{S}$, if $C$ is in $\mathcal{S}$ and every subgroup of
$C$ is finitely generated.
Keywords:free product with amalgamation, $\HNN$ group, graph of groups, fundamental group Categories:20E06, 20E08, 57M07 

86. CMB 2002 (vol 45 pp. 686)
 Rauschning, Jan; Slodowy, Peter

An Aspect of Icosahedral Symmetry
We embed the moduli space $Q$ of 5 points on the projective line
$S_5$equivariantly into $\mathbb{P} (V)$, where $V$ is the
6dimensional irreducible module of the symmetric group $S_5$. This
module splits with respect to the icosahedral group $A_5$ into the two
standard 3dimensional representations. The resulting linear
projections of $Q$ relate the action of $A_5$ on $Q$ to those on the
regular icosahedron.
Categories:14L24, 20B25 

87. CMB 2002 (vol 45 pp. 537)
88. CMB 2002 (vol 45 pp. 388)
 Gille, Philippe

AlgÃ¨bres simples centrales de degrÃ© 5 et $E_8$
As a consequence of a theorem of RostSpringer, we establish that the
cyclicity problem for central simple algebra of degree~5 on fields
containg a fifth root of unity is equivalent to the study of
anisotropic elements of order 5 in the split group of type~$E_8$.
Keywords:algÃ¨bres simples centrales, cohomologie galoisienne Categories:16S35, 12G05, 20G15 

89. CMB 2002 (vol 45 pp. 168)
 Byott, Nigel P.; Elder, G. Griffith

Biquadratic Extensions with One Break
We explicitly describe, in terms of indecomposable $\mathbb{Z}_2
[G]$modules, the Galois module structure of ideals in totally
ramified biquadratic extensions of local number fields with only
one break in their ramification filtration. This paper completes
work begun in [Elder: Canad. J.~Math. (5) {\bf 50}(1998), 10071047].
Categories:11S15, 20C11 

90. CMB 2002 (vol 45 pp. 294)
91. CMB 2001 (vol 44 pp. 385)
 Ballantine, Cristina M.

A Hypergraph with Commuting Partial Laplacians
Let $F$ be a totally real number field and let $\GL_{n}$ be the
general linear group of rank $n$ over $F$. Let $\mathfrak{p}$
be a prime ideal of $F$ and $F_{\mathfrak{p}}$ the completion of $F$
with respect to the valuation induced by $\mathfrak{p}$. We will
consider a finite quotient of the affine building of the group
$\GL_{n}$ over the field $F_{\mathfrak{p}}$. We will view this object
as a hypergraph and find a set of commuting operators whose sum will
be the usual adjacency operator of the graph underlying the hypergraph.
Keywords:Hecke operators, buildings Categories:11F25, 20F32 

92. CMB 2001 (vol 44 pp. 93)
 Neumann, B. H.

Some Semigroup Laws in Groups
A challenge by R.~Padmanabhan to prove by group theory the
commutativity of cancellative semigroups satisfying a particular
law has led to the proof of more general semigroup laws being
equivalent to quite simple ones.
Categories:20E10, 20M07 

93. CMB 2001 (vol 44 pp. 27)
94. CMB 2000 (vol 43 pp. 268)
 Bogley, W. A.; Gilbert, N. D.; Howie, James

Cockcroft Properties of Thompson's Group
In a study of the word problem for groups, R.~J.~Thompson
considered a certain group $F$ of selfhomeomorphisms of the Cantor
set and showed, among other things, that $F$ is finitely presented.
Using results of K.~S.~Brown and R.~Geoghegan, M.~N.~Dyer showed
that $F$ is the fundamental group of a finite twocomplex $Z^2$
having Euler characteristic one and which is {\em Cockcroft}, in
the sense that each map of the twosphere into $Z^2$ is
homologically trivial. We show that no proper covering complex of
$Z^2$ is Cockcroft. A general result on Cockcroft properties
implies that no proper regular covering complex of any finite
twocomplex with fundamental group $F$ is Cockcroft.
Keywords:twocomplex, covering space, Cockcroft twocomplex, Thompson's group Categories:57M20, 20F38, 57M10, 20F34 

95. CMB 2000 (vol 43 pp. 79)
96. CMB 1999 (vol 42 pp. 335)
 Kim, Goansu; Tang, C. Y.

Cyclic Subgroup Separability of HNNExtensions with Cyclic Associated Subgroups
We derive a necessary and sufficient condition for HNNextensions
of cyclic subgroup separable groups with cyclic associated
subgroups to be cyclic subgroup separable. Applying this, we
explicitly characterize the residual finiteness and the cyclic
subgroup separability of HNNextensions of abelian groups with
cyclic associated subgroups. We also consider these residual
properties of HNNextensions of nilpotent groups with cyclic
associated subgroups.
Keywords:HNNextension, nilpotent groups, cyclic subgroup separable $(\pi_c)$, residually finite Categories:20E26, 20E06, 20F10 

97. CMB 1999 (vol 42 pp. 298)
98. CMB 1998 (vol 41 pp. 385)
 Burns, John; Ellis, Graham

Inequalities for Baer invariants of finite groups
In this note we further our investigation of Baer invariants of
groups by obtaining, as consequences of an exact sequence of
A.~S.T.~Lue, some numerical inequalities for their orders,
exponents, and generating sets. An interesting group theoretic
corollary is an explicit bound for $\gamma_{c+1}(G)$ given that
$G/Z_c(G)$ is a finite $p$group with prescribed order and number
of generators.
Category:20C25 

99. CMB 1998 (vol 41 pp. 488)
 Sun, Heng

Remarks on certain metaplectic groups
We study metaplectic coverings of the adelized group of a split
connected reductive group $G$ over a number field $F$. Assume its
derived group $G'$ is a simply connected simple Chevalley
group. The purpose is to provide some naturally defined sections
for the coverings with good properties which might be helpful when
we carry some explicit calculations in the theory of automorphic
forms on metaplectic groups. Specifically, we
\begin{enumerate}
\item construct metaplectic coverings of $G({\Bbb A})$ from those
of $G'({\Bbb A})$;
\item for any nonarchimedean place $v$, show the section for a
covering of $G(F_{v})$ constructed from a Steinberg section is an
isomorphism, both algebraically and topologically in an open
subgroup of $G(F_{v})$;
\item define a global section which is a product of local sections
on a maximal torus, a unipotent subgroup and a set of
representatives for the Weyl group.
Categories:20G10, 11F75 

100. CMB 1998 (vol 41 pp. 423)