26. CMB 2014 (vol 57 pp. 231)
 Bagherian, J.

On the Multiplicities of Characters in Table Algebras
In this paper we show that every module of a table algebra
can be considered as a faithful module of some quotient table
algebra.
Also we prove that every faithful module of a table algebra
determines a closed subset which is a cyclic group.
As a main result we give some information about multiplicities
of characters in table algebras.
Keywords:table algebra, faithful module, multiplicity of character Categories:20C99, 16G30 

27. CMB 2013 (vol 57 pp. 506)
 Galindo, César

On Braided and Ribbon Unitary Fusion Categories
We prove that every braiding over a unitary fusion category is
unitary and every unitary braided fusion category admits a unique
unitary ribbon structure.
Keywords:fusion categories, braided categories, modular categories Categories:20F36, 16W30, 18D10 

28. CMB 2013 (vol 57 pp. 449)
 Alaghmandan, Mahmood; Choi, Yemon; Samei, Ebrahim

ZLamenability Constants of Finite Groups with Two Character Degrees
We calculate the exact amenability constant of the centre of
$\ell^1(G)$ when $G$ is one of the following classes of finite group:
dihedral; extraspecial; or Frobenius with abelian complement and
kernel. This is done using a formula which applies to all finite
groups with two character degrees. In passing, we answer in the
negative a question raised in work of the third author with Azimifard
and Spronk (J. Funct. Anal. 2009).
Keywords:center of group algebras, characters, character degrees, amenability constant, Frobenius group, extraspecial groups Categories:43A20, 20C15 

29. CMB 2013 (vol 57 pp. 125)
 Mlaiki, Nabil M.

Camina Triples
In this paper, we study Camina triples. Camina triples are a
generalization of Camina pairs. Camina pairs were first introduced
in 1978 by A .R. Camina.
Camina's work
was inspired by the study of Frobenius groups. We
show that if $(G,N,M)$ is a Camina triple, then either $G/N$ is a
$p$group, or $M$ is abelian, or $M$ has a nontrivial nilpotent or
Frobenius quotient.
Keywords:Camina triples, Camina pairs, nilpotent groups, vanishing off subgroup, irreducible characters, solvable groups Category:20D15 

30. CMB 2013 (vol 57 pp. 9)
31. CMB 2013 (vol 56 pp. 795)
 MacDonald, Mark L.

Upper Bounds for the Essential Dimension of $E_7$
This paper gives a new upper bound for the essential dimension and the
essential 2dimension of the split simply connected group of type
$E_7$ over a field of characteristic not 2 or 3. In particular,
$\operatorname{ed}(E_7) \leq 29$, and $\operatorname{ed}(E_7;2) \leq 27$.
Keywords:$E_7$, essential dimension, stabilizer in general position Categories:20G15, 20G41 

32. CMB 2012 (vol 57 pp. 303)
33. CMB 2012 (vol 56 pp. 881)
34. CMB 2012 (vol 57 pp. 97)
 Levy, Jason

Rationality and the JordanGattiViniberghi decomposition
We verify
our earlier conjecture
and use it to prove that the
semisimple parts of the rational JordanKacVinberg decompositions of
a rational vector all lie in a single rational orbit.
Keywords:reductive group, $G$module, Jordan decomposition, orbit closure, rationality Categories:20G15, 14L24 

35. CMB 2012 (vol 57 pp. 326)
 Ivanov, S. V.; Mikhailov, Roman

On Zerodivisors in Group Rings of Groups with Torsion
Nontrivial pairs of zerodivisors in group rings are
introduced and discussed. A problem on the existence of nontrivial
pairs of zerodivisors in group rings of free Burnside groups of odd
exponent $n \gg 1$ is solved in the affirmative. Nontrivial pairs of
zerodivisors are also found in group rings of free products of groups
with torsion.
Keywords:Burnside groups, free products of groups, group rings, zerodivisors Categories:20C07, 20E06, 20F05, , 20F50 

36. CMB 2012 (vol 57 pp. 424)
 Sołtan, Piotr M.; Viselter, Ami

A Note on Amenability of Locally Compact Quantum Groups
In this short note we introduce a notion called ``quantum injectivity''
of locally compact quantum groups, and prove that it is equivalent
to amenability of the dual. Particularly, this provides a new characterization
of amenability of locally compact groups.
Keywords:amenability, conditional expectation, injectivity, locally compact quantum group, quantum injectivity Categories:20G42, 22D25, 46L89 

37. CMB 2012 (vol 57 pp. 132)
 Mubeena, T.; Sankaran, P.

Twisted Conjugacy Classes in Abelian Extensions of Certain Linear Groups
Given a group automorphism $\phi:\Gamma\longrightarrow \Gamma$, one has
an action of $\Gamma$ on itself by $\phi$twisted conjugacy, namely, $g.x=gx\phi(g^{1})$.
The orbits of this action are called $\phi$twisted conjugacy classes. One says
that $\Gamma$ has the $R_\infty$property if there are infinitely many $\phi$twisted conjugacy
classes for every automorphism $\phi$ of $\Gamma$. In this paper we
show that $\operatorname{SL}(n,\mathbb{Z})$ and its
congruence subgroups have the $R_\infty$property. Further we show that
any (countable) abelian extension of $\Gamma$ has the $R_\infty$property where $\Gamma$ is a torsion
free nonelementary hyperbolic group, or $\operatorname{SL}(n,\mathbb{Z}),
\operatorname{Sp}(2n,\mathbb{Z})$ or a principal congruence
subgroup of $\operatorname{SL}(n,\mathbb{Z})$ or the fundamental group of a complete Riemannian
manifold of constant negative curvature.
Keywords:twisted conjugacy classes, hyperbolic groups, lattices in Lie groups Category:20E45 

38. CMB 2012 (vol 56 pp. 630)
 Sundar, S.

Inverse Semigroups and Sheu's Groupoid for the Odd Dimensional Quantum Spheres
In this paper, we give a different proof of the fact that the odd dimensional
quantum spheres are groupoid $C^{*}$algebras. We show that the $C^{*}$algebra
$C(S_{q}^{2\ell+1})$ is generated by an inverse semigroup $T$ of partial
isometries. We show that the groupoid $\mathcal{G}_{tight}$ associated with the
inverse semigroup $T$ by Exel is exactly the same as the groupoid
considered by Sheu.
Keywords:inverse semigroups, groupoids, odd dimensional quantum spheres Categories:46L99, 20M18 

39. CMB 2011 (vol 55 pp. 783)
 Motallebi, M. R.; Saiflu, H.

Products and Direct Sums in Locally Convex Cones
In this paper we define lower, upper, and symmetric completeness and
discuss closure of the sets in product and direct sums. In particular,
we introduce suitable bases for these topologies, which leads us to
investigate completeness of the direct sum and its components. Some
results obtained about $X$topologies and polars of the neighborhoods.
Keywords:product and direct sum, duality, locally convex cone Categories:20K25, 46A30, 46A20 

40. CMB 2011 (vol 56 pp. 395)
 Oancea, D.

Coessential Abelianization Morphisms in the Category of Groups
An epimorphism $\phi\colon G\to H$ of groups, where $G$ has rank $n$, is called
coessential if every (ordered) generating $n$tuple of $H$ can be
lifted along $\phi$ to a generating $n$tuple for $G$. We discuss this
property in the context of the category of groups, and establish a criterion
for such a group $G$ to have the property that its abelianization
epimorphism $G\to G/[G,G]$, where $[G,G]$ is the commutator subgroup, is
coessential. We give an example of a family of 2generator groups whose
abelianization epimorphism is not coessential.
This family also provides counterexamples to the generalized AndrewsCurtis conjecture.
Keywords:coessential epimorphism, Nielsen transformations, AndrewCurtis transformations Categories:20F05, 20F99, 20J15 

41. CMB 2011 (vol 56 pp. 272)
 Cheng, Lixin; Luo, Zhenghua; Zhou, Yu

On Super Weakly Compact Convex Sets and Representation of the Dual of the Normed Semigroup They Generate
In this note, we first give a characterization of super weakly
compact convex sets of a Banach space $X$:
a closed bounded convex set $K\subset X$ is
super weakly compact if and only if there exists a $w^*$ lower
semicontinuous seminorm $p$ with $p\geq\sigma_K\equiv\sup_{x\in
K}\langle\,\cdot\,,x\rangle$ such that $p^2$ is uniformly FrÃ©chet
differentiable on each bounded set of $X^*$. Then we present a
representation theorem for the dual of the semigroup $\textrm{swcc}(X)$
consisting of all the nonempty super weakly compact convex sets of the
space $X$.
Keywords:super weakly compact set, dual of normed semigroup, uniform FrÃ©chet differentiability, representation Categories:20M30, 46B10, 46B20, 46E15, 46J10, 49J50 

42. CMB 2011 (vol 56 pp. 13)
 Alon, Gil; Kozma, Gady

Ordering the Representations of $S_n$ Using the Interchange Process
Inspired by Aldous' conjecture for
the spectral gap of the interchange process and its recent
resolution by Caputo, Liggett, and Richthammer, we define
an associated order $\prec$ on the irreducible representations of $S_n$. Aldous'
conjecture is equivalent to certain representations being comparable
in this order, and hence determining the ``Aldous order'' completely is a
generalized question. We show a few additional entries for this order.
Keywords:Aldous' conjecture, interchange process, symmetric group, representations Categories:82C22, 60B15, 43A65, 20B30, 60J27, 60K35 

43. CMB 2011 (vol 55 pp. 673)
 Aizenbud, Avraham; Gourevitch, Dmitry

Multiplicity Free Jacquet Modules
Let $F$ be a nonArchimedean local field or a finite field.
Let $n$ be a natural number and $k$ be $1$ or $2$.
Consider $G:=\operatorname{GL}_{n+k}(F)$ and let
$M:=\operatorname{GL}_n(F) \times \operatorname{GL}_k(F)\lt G$ be a maximal Levi subgroup.
Let $U\lt G$ be the corresponding unipotent subgroup and let $P=MU$ be the corresponding parabolic subgroup.
Let $J:=J_M^G: \mathcal{M}(G) \to \mathcal{M}(M)$ be the Jacquet functor, i.e., the functor of coinvariants with respect to $U$.
In this paper we prove that $J$ is a multiplicity free functor, i.e.,
$\dim \operatorname{Hom}_M(J(\pi),\rho)\leq 1$,
for any irreducible representations $\pi$ of $G$ and $\rho$ of $M$.
We adapt the classical method of Gelfand and Kazhdan, which proves the ``multiplicity free" property of certain representations to prove the ``multiplicity free" property of certain functors.
At the end we discuss whether other Jacquet functors are multiplicity free.
Keywords:multiplicity one, Gelfand pair, invariant distribution, finite group Categories:20G05, 20C30, 20C33, 46F10, 47A67 

44. CMB 2011 (vol 54 pp. 654)
 Forrest, Brian E.; Runde, Volker

Norm One Idempotent $cb$Multipliers with Applications to the Fourier Algebra in the $cb$Multiplier Norm
For a locally compact group $G$, let $A(G)$ be its Fourier algebra, let $M_{cb}A(G)$ denote the completely
bounded multipliers of $A(G)$, and let $A_{\mathit{Mcb}}(G)$ stand for the closure of $A(G)$ in $M_{cb}A(G)$. We
characterize the norm one idempotents in $M_{cb}A(G)$: the indicator function of a set $E \subset G$ is a norm
one idempotent in $M_{cb}A(G)$ if and only if $E$ is a coset of an open subgroup of $G$. As applications, we
describe the closed ideals of $A_{\mathit{Mcb}}(G)$ with an approximate identity bounded by $1$, and we characterize
those $G$ for which $A_{\mathit{Mcb}}(G)$ is $1$amenable in the sense of B. E. Johnson. (We can even slightly
relax the norm bounds.)
Keywords:amenability, bounded approximate identity, $cb$multiplier norm, Fourier algebra, norm one idempotent Categories:43A22, 20E05, 43A30, 46J10, 46J40, 46L07, 47L25 

45. CMB 2011 (vol 55 pp. 48)
 Chebolu, Sunil K.; Christensen, J. Daniel; Mináč, Ján

Freyd's Generating Hypothesis for Groups with Periodic Cohomology
Let $G$ be a finite group, and let $k$ be a field whose characteristic $p$
divides
the order of $G$.
Freyd's generating hypothesis for the stable module category of
$G$ is the statement that a map between finitedimensional
$kG$modules in the thick subcategory generated by $k$ factors through a
projective if the induced map on Tate cohomology is trivial. We show that if
$G$
has periodic cohomology, then the generating hypothesis holds if and only if
the Sylow
$p$subgroup of $G$ is $C_2$ or $C_3$. We also give some other conditions
that are equivalent to the GH
for groups with periodic cohomology.
Keywords:Tate cohomology, generating hypothesis, stable module category, ghost map, principal block, thick subcategory, periodic cohomology Categories:20C20, 20J06, 55P42 

46. CMB 2011 (vol 55 pp. 390)
 Riedl, Jeffrey M.

Automorphisms of Iterated Wreath Product $p$Groups
We determine the order of
the automorphism group
$\operatorname{Aut}(W)$ for each member
$W$ of an important family
of finite $p$groups that
may be constructed as
iterated regular wreath
products of cyclic groups.
We use a method based on
representation theory.
Categories:20D45, 20D15, 20E22 

47. CMB 2011 (vol 54 pp. 663)
 Haas, Ruth; G. Helminck, Aloysius

Admissible Sequences for Twisted Involutions in Weyl Groups
Let $W$ be a Weyl group, $\Sigma$ a set of simple reflections in $W$
related to a basis $\Delta$ for the root system $\Phi$ associated with
$W$ and $\theta$ an involution such that $\theta(\Delta) = \Delta$. We
show that the set of $\theta$twisted involutions in $W$,
$\mathcal{I}_{\theta} = \{w\in W \mid \theta(w) = w^{1}\}$ is in one
to one correspondence with the set of regular involutions
$\mathcal{I}_{\operatorname{Id}}$. The elements of $\mathcal{I}_{\theta}$ are
characterized by sequences in $\Sigma$ which induce an ordering called
the RichardsonSpringer Poset. In particular, for $\Phi$ irreducible,
the ascending RichardsonSpringer Poset of $\mathcal{I}_{\theta}$,
for nontrivial $\theta$ is identical to the descending
RichardsonSpringer Poset of $\mathcal{I}_{\operatorname{Id}}$.
Categories:20G15, 20G20, 22E15, 22E46, 43A85 

48. CMB 2011 (vol 55 pp. 98)
 Glied, Svenja

Similarity and Coincidence Isometries for Modules
The groups of (linear) similarity and coincidence isometries of
certain modules $\varGamma$ in $d$dimensional Euclidean space, which
naturally occur in quasicrystallography, are considered. It is shown
that the structure of the factor group of similarity modulo
coincidence isometries is the direct sum of cyclic groups of prime
power orders that divide $d$. In particular, if the dimension $d$ is a
prime number $p$, the factor group is an elementary abelian
$p$group. This generalizes previous results obtained for lattices to
situations relevant in quasicrystallography.
Categories:20H15, 82D25, 52C23 

49. CMB 2011 (vol 55 pp. 38)
 Butske, William

Endomorphisms of Two Dimensional Jacobians and Related Finite Algebras
Zarhin proves that if $C$ is the curve $y^2=f(x)$ where
$\textrm{Gal}_{\mathbb{Q}}(f(x))=S_n$ or $A_n$, then
${\textrm{End}}_{\overline{\mathbb{Q}}}(J)=\mathbb{Z}$. In seeking to examine his
result in the genus $g=2$ case supposing other Galois groups, we
calculate
$\textrm{End}_{\overline{\mathbb{Q}}}(J)\otimes_{\mathbb{Z}} \mathbb{F}_2$
for a genus $2$ curve where $f(x)$ is irreducible.
In particular, we show that unless the Galois group is $S_5$ or
$A_5$, the Galois group does not determine ${\textrm{End}}_{\overline{\mathbb{Q}}}(J)$.
Categories:11G10, 20C20 

50. CMB 2011 (vol 55 pp. 188)