CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 20 ( Group theory and generalizations )

  Expand all        Collapse all Results 26 - 50 of 121

26. CMB 2014 (vol 57 pp. 231)

Bagherian, J.
On the Multiplicities of Characters in Table Algebras
In this paper we show that every module of a table algebra can be considered as a faithful module of some quotient table algebra. Also we prove that every faithful module of a table algebra determines a closed subset which is a cyclic group. As a main result we give some information about multiplicities of characters in table algebras.

Keywords:table algebra, faithful module, multiplicity of character
Categories:20C99, 16G30

27. CMB 2013 (vol 57 pp. 506)

Galindo, César
On Braided and Ribbon Unitary Fusion Categories
We prove that every braiding over a unitary fusion category is unitary and every unitary braided fusion category admits a unique unitary ribbon structure.

Keywords:fusion categories, braided categories, modular categories
Categories:20F36, 16W30, 18D10

28. CMB 2013 (vol 57 pp. 449)

Alaghmandan, Mahmood; Choi, Yemon; Samei, Ebrahim
ZL-amenability Constants of Finite Groups with Two Character Degrees
We calculate the exact amenability constant of the centre of $\ell^1(G)$ when $G$ is one of the following classes of finite group: dihedral; extraspecial; or Frobenius with abelian complement and kernel. This is done using a formula which applies to all finite groups with two character degrees. In passing, we answer in the negative a question raised in work of the third author with Azimifard and Spronk (J. Funct. Anal. 2009).

Keywords:center of group algebras, characters, character degrees, amenability constant, Frobenius group, extraspecial groups
Categories:43A20, 20C15

29. CMB 2013 (vol 57 pp. 125)

Mlaiki, Nabil M.
Camina Triples
In this paper, we study Camina triples. Camina triples are a generalization of Camina pairs. Camina pairs were first introduced in 1978 by A .R. Camina. Camina's work was inspired by the study of Frobenius groups. We show that if $(G,N,M)$ is a Camina triple, then either $G/N$ is a $p$-group, or $M$ is abelian, or $M$ has a non-trivial nilpotent or Frobenius quotient.

Keywords:Camina triples, Camina pairs, nilpotent groups, vanishing off subgroup, irreducible characters, solvable groups
Category:20D15

30. CMB 2013 (vol 57 pp. 9)

Alperin, Roger C.; Peterson, Brian L.
Integral Sets and the Center of a Finite Group
We give a description of the atoms in the Boolean algebra generated by the integral subsets of a finite group.

Keywords:integral set, characters, Boolean algebra
Category:20C99

31. CMB 2013 (vol 56 pp. 795)

MacDonald, Mark L.
Upper Bounds for the Essential Dimension of $E_7$
This paper gives a new upper bound for the essential dimension and the essential 2-dimension of the split simply connected group of type $E_7$ over a field of characteristic not 2 or 3. In particular, $\operatorname{ed}(E_7) \leq 29$, and $\operatorname{ed}(E_7;2) \leq 27$.

Keywords:$E_7$, essential dimension, stabilizer in general position
Categories:20G15, 20G41

32. CMB 2012 (vol 57 pp. 303)

Gille, Philippe
Octonion Algebras over Rings are not Determined by their Norms
Answering a question of H. Petersson, we provide a class of examples of pair of octonion algebras over a ring having isometric norms.

Keywords:octonion algebras, torsors, descent
Categories:14L24, 20G41

33. CMB 2012 (vol 56 pp. 881)

Xie, BaoHua; Wang, JieYan; Jiang, YuePing
Free Groups Generated by Two Heisenberg Translations
In this paper, we will discuss the groups generated by two Heisenberg translations of $\mathbf{PU}(2,1)$ and determine when they are free.

Keywords:free group, Heisenberg group, complex triangle group
Categories:30F40, 22E40, 20H10

34. CMB 2012 (vol 57 pp. 97)

Levy, Jason
Rationality and the Jordan-Gatti-Viniberghi decomposition
We verify our earlier conjecture and use it to prove that the semisimple parts of the rational Jordan-Kac-Vinberg decompositions of a rational vector all lie in a single rational orbit.

Keywords:reductive group, $G$-module, Jordan decomposition, orbit closure, rationality
Categories:20G15, 14L24

35. CMB 2012 (vol 57 pp. 326)

Ivanov, S. V.; Mikhailov, Roman
On Zero-divisors in Group Rings of Groups with Torsion
Nontrivial pairs of zero-divisors in group rings are introduced and discussed. A problem on the existence of nontrivial pairs of zero-divisors in group rings of free Burnside groups of odd exponent $n \gg 1$ is solved in the affirmative. Nontrivial pairs of zero-divisors are also found in group rings of free products of groups with torsion.

Keywords:Burnside groups, free products of groups, group rings, zero-divisors
Categories:20C07, 20E06, 20F05, , 20F50

36. CMB 2012 (vol 57 pp. 424)

Sołtan, Piotr M.; Viselter, Ami
A Note on Amenability of Locally Compact Quantum Groups
In this short note we introduce a notion called ``quantum injectivity'' of locally compact quantum groups, and prove that it is equivalent to amenability of the dual. Particularly, this provides a new characterization of amenability of locally compact groups.

Keywords:amenability, conditional expectation, injectivity, locally compact quantum group, quantum injectivity
Categories:20G42, 22D25, 46L89

37. CMB 2012 (vol 57 pp. 132)

Mubeena, T.; Sankaran, P.
Twisted Conjugacy Classes in Abelian Extensions of Certain Linear Groups
Given a group automorphism $\phi:\Gamma\longrightarrow \Gamma$, one has an action of $\Gamma$ on itself by $\phi$-twisted conjugacy, namely, $g.x=gx\phi(g^{-1})$. The orbits of this action are called $\phi$-twisted conjugacy classes. One says that $\Gamma$ has the $R_\infty$-property if there are infinitely many $\phi$-twisted conjugacy classes for every automorphism $\phi$ of $\Gamma$. In this paper we show that $\operatorname{SL}(n,\mathbb{Z})$ and its congruence subgroups have the $R_\infty$-property. Further we show that any (countable) abelian extension of $\Gamma$ has the $R_\infty$-property where $\Gamma$ is a torsion free non-elementary hyperbolic group, or $\operatorname{SL}(n,\mathbb{Z}), \operatorname{Sp}(2n,\mathbb{Z})$ or a principal congruence subgroup of $\operatorname{SL}(n,\mathbb{Z})$ or the fundamental group of a complete Riemannian manifold of constant negative curvature.

Keywords:twisted conjugacy classes, hyperbolic groups, lattices in Lie groups
Category:20E45

38. CMB 2012 (vol 56 pp. 630)

Sundar, S.
Inverse Semigroups and Sheu's Groupoid for the Odd Dimensional Quantum Spheres
In this paper, we give a different proof of the fact that the odd dimensional quantum spheres are groupoid $C^{*}$-algebras. We show that the $C^{*}$-algebra $C(S_{q}^{2\ell+1})$ is generated by an inverse semigroup $T$ of partial isometries. We show that the groupoid $\mathcal{G}_{tight}$ associated with the inverse semigroup $T$ by Exel is exactly the same as the groupoid considered by Sheu.

Keywords:inverse semigroups, groupoids, odd dimensional quantum spheres
Categories:46L99, 20M18

39. CMB 2011 (vol 55 pp. 783)

Motallebi, M. R.; Saiflu, H.
Products and Direct Sums in Locally Convex Cones
In this paper we define lower, upper, and symmetric completeness and discuss closure of the sets in product and direct sums. In particular, we introduce suitable bases for these topologies, which leads us to investigate completeness of the direct sum and its components. Some results obtained about $X$-topologies and polars of the neighborhoods.

Keywords:product and direct sum, duality, locally convex cone
Categories:20K25, 46A30, 46A20

40. CMB 2011 (vol 56 pp. 395)

Oancea, D.
Coessential Abelianization Morphisms in the Category of Groups
An epimorphism $\phi\colon G\to H$ of groups, where $G$ has rank $n$, is called coessential if every (ordered) generating $n$-tuple of $H$ can be lifted along $\phi$ to a generating $n$-tuple for $G$. We discuss this property in the context of the category of groups, and establish a criterion for such a group $G$ to have the property that its abelianization epimorphism $G\to G/[G,G]$, where $[G,G]$ is the commutator subgroup, is coessential. We give an example of a family of 2-generator groups whose abelianization epimorphism is not coessential. This family also provides counterexamples to the generalized Andrews--Curtis conjecture.

Keywords:coessential epimorphism, Nielsen transformations, Andrew-Curtis transformations
Categories:20F05, 20F99, 20J15

41. CMB 2011 (vol 56 pp. 272)

Cheng, Lixin; Luo, Zhenghua; Zhou, Yu
On Super Weakly Compact Convex Sets and Representation of the Dual of the Normed Semigroup They Generate
In this note, we first give a characterization of super weakly compact convex sets of a Banach space $X$: a closed bounded convex set $K\subset X$ is super weakly compact if and only if there exists a $w^*$ lower semicontinuous seminorm $p$ with $p\geq\sigma_K\equiv\sup_{x\in K}\langle\,\cdot\,,x\rangle$ such that $p^2$ is uniformly Fréchet differentiable on each bounded set of $X^*$. Then we present a representation theorem for the dual of the semigroup $\textrm{swcc}(X)$ consisting of all the nonempty super weakly compact convex sets of the space $X$.

Keywords:super weakly compact set, dual of normed semigroup, uniform Fréchet differentiability, representation
Categories:20M30, 46B10, 46B20, 46E15, 46J10, 49J50

42. CMB 2011 (vol 56 pp. 13)

Alon, Gil; Kozma, Gady
Ordering the Representations of $S_n$ Using the Interchange Process
Inspired by Aldous' conjecture for the spectral gap of the interchange process and its recent resolution by Caputo, Liggett, and Richthammer, we define an associated order $\prec$ on the irreducible representations of $S_n$. Aldous' conjecture is equivalent to certain representations being comparable in this order, and hence determining the ``Aldous order'' completely is a generalized question. We show a few additional entries for this order.

Keywords:Aldous' conjecture, interchange process, symmetric group, representations
Categories:82C22, 60B15, 43A65, 20B30, 60J27, 60K35

43. CMB 2011 (vol 55 pp. 673)

Aizenbud, Avraham; Gourevitch, Dmitry
Multiplicity Free Jacquet Modules
Let $F$ be a non-Archimedean local field or a finite field. Let $n$ be a natural number and $k$ be $1$ or $2$. Consider $G:=\operatorname{GL}_{n+k}(F)$ and let $M:=\operatorname{GL}_n(F) \times \operatorname{GL}_k(F)\lt G$ be a maximal Levi subgroup. Let $U\lt G$ be the corresponding unipotent subgroup and let $P=MU$ be the corresponding parabolic subgroup. Let $J:=J_M^G: \mathcal{M}(G) \to \mathcal{M}(M)$ be the Jacquet functor, i.e., the functor of coinvariants with respect to $U$. In this paper we prove that $J$ is a multiplicity free functor, i.e., $\dim \operatorname{Hom}_M(J(\pi),\rho)\leq 1$, for any irreducible representations $\pi$ of $G$ and $\rho$ of $M$. We adapt the classical method of Gelfand and Kazhdan, which proves the ``multiplicity free" property of certain representations to prove the ``multiplicity free" property of certain functors. At the end we discuss whether other Jacquet functors are multiplicity free.

Keywords:multiplicity one, Gelfand pair, invariant distribution, finite group
Categories:20G05, 20C30, 20C33, 46F10, 47A67

44. CMB 2011 (vol 54 pp. 654)

Forrest, Brian E.; Runde, Volker
Norm One Idempotent $cb$-Multipliers with Applications to the Fourier Algebra in the $cb$-Multiplier Norm
For a locally compact group $G$, let $A(G)$ be its Fourier algebra, let $M_{cb}A(G)$ denote the completely bounded multipliers of $A(G)$, and let $A_{\mathit{Mcb}}(G)$ stand for the closure of $A(G)$ in $M_{cb}A(G)$. We characterize the norm one idempotents in $M_{cb}A(G)$: the indicator function of a set $E \subset G$ is a norm one idempotent in $M_{cb}A(G)$ if and only if $E$ is a coset of an open subgroup of $G$. As applications, we describe the closed ideals of $A_{\mathit{Mcb}}(G)$ with an approximate identity bounded by $1$, and we characterize those $G$ for which $A_{\mathit{Mcb}}(G)$ is $1$-amenable in the sense of B. E. Johnson. (We can even slightly relax the norm bounds.)

Keywords:amenability, bounded approximate identity, $cb$-multiplier norm, Fourier algebra, norm one idempotent
Categories:43A22, 20E05, 43A30, 46J10, 46J40, 46L07, 47L25

45. CMB 2011 (vol 55 pp. 48)

Chebolu, Sunil K.; Christensen, J. Daniel; Mináč, Ján
Freyd's Generating Hypothesis for Groups with Periodic Cohomology
Let $G$ be a finite group, and let $k$ be a field whose characteristic $p$ divides the order of $G$. Freyd's generating hypothesis for the stable module category of $G$ is the statement that a map between finite-dimensional $kG$-modules in the thick subcategory generated by $k$ factors through a projective if the induced map on Tate cohomology is trivial. We show that if $G$ has periodic cohomology, then the generating hypothesis holds if and only if the Sylow $p$-subgroup of $G$ is $C_2$ or $C_3$. We also give some other conditions that are equivalent to the GH for groups with periodic cohomology.

Keywords:Tate cohomology, generating hypothesis, stable module category, ghost map, principal block, thick subcategory, periodic cohomology
Categories:20C20, 20J06, 55P42

46. CMB 2011 (vol 55 pp. 390)

Riedl, Jeffrey M.
Automorphisms of Iterated Wreath Product $p$-Groups
We determine the order of the automorphism group $\operatorname{Aut}(W)$ for each member $W$ of an important family of finite $p$-groups that may be constructed as iterated regular wreath products of cyclic groups. We use a method based on representation theory.

Categories:20D45, 20D15, 20E22

47. CMB 2011 (vol 54 pp. 663)

Haas, Ruth; G. Helminck, Aloysius
Admissible Sequences for Twisted Involutions in Weyl Groups
Let $W$ be a Weyl group, $\Sigma$ a set of simple reflections in $W$ related to a basis $\Delta$ for the root system $\Phi$ associated with $W$ and $\theta$ an involution such that $\theta(\Delta) = \Delta$. We show that the set of $\theta$-twisted involutions in $W$, $\mathcal{I}_{\theta} = \{w\in W \mid \theta(w) = w^{-1}\}$ is in one to one correspondence with the set of regular involutions $\mathcal{I}_{\operatorname{Id}}$. The elements of $\mathcal{I}_{\theta}$ are characterized by sequences in $\Sigma$ which induce an ordering called the Richardson-Springer Poset. In particular, for $\Phi$ irreducible, the ascending Richardson-Springer Poset of $\mathcal{I}_{\theta}$, for nontrivial $\theta$ is identical to the descending Richardson-Springer Poset of $\mathcal{I}_{\operatorname{Id}}$.

Categories:20G15, 20G20, 22E15, 22E46, 43A85

48. CMB 2011 (vol 55 pp. 98)

Glied, Svenja
Similarity and Coincidence Isometries for Modules
The groups of (linear) similarity and coincidence isometries of certain modules $\varGamma$ in $d$-dimensional Euclidean space, which naturally occur in quasicrystallography, are considered. It is shown that the structure of the factor group of similarity modulo coincidence isometries is the direct sum of cyclic groups of prime power orders that divide $d$. In particular, if the dimension $d$ is a prime number $p$, the factor group is an elementary abelian $p$-group. This generalizes previous results obtained for lattices to situations relevant in quasicrystallography.

Categories:20H15, 82D25, 52C23

49. CMB 2011 (vol 55 pp. 38)

Butske, William
Endomorphisms of Two Dimensional Jacobians and Related Finite Algebras
Zarhin proves that if $C$ is the curve $y^2=f(x)$ where $\textrm{Gal}_{\mathbb{Q}}(f(x))=S_n$ or $A_n$, then ${\textrm{End}}_{\overline{\mathbb{Q}}}(J)=\mathbb{Z}$. In seeking to examine his result in the genus $g=2$ case supposing other Galois groups, we calculate $\textrm{End}_{\overline{\mathbb{Q}}}(J)\otimes_{\mathbb{Z}} \mathbb{F}_2$ for a genus $2$ curve where $f(x)$ is irreducible. In particular, we show that unless the Galois group is $S_5$ or $A_5$, the Galois group does not determine ${\textrm{End}}_{\overline{\mathbb{Q}}}(J)$.

Categories:11G10, 20C20

50. CMB 2011 (vol 55 pp. 188)

Steinberg, Benjamin
Yet Another Solution to the Burnside Problem for Matrix Semigroups
We use the kernel category to give a finiteness condition for semigroups. As a consequence we provide yet another proof that finitely generated periodic semigroups of matrices are finite.

Keywords:Burnside problem, kernel category
Categories:20M30, 20M32
Page
   1 2 3 4 5    

© Canadian Mathematical Society, 2016 : https://cms.math.ca/