1. CMB Online first
 Donovan, Diane M.; Griggs, Terry S.; McCourt, Thomas A.; Opršal, Jakub; Stanovský, David

Distributive and antidistributive Mendelsohn triple systems
We prove that the existence spectrum of Mendelsohn triple systems
whose associated quasigroups satisfy distributivity corresponds
to the Loeschian numbers, and provide some enumeration results.
We do this by considering a description of the quasigroups in
terms of commutative Moufang loops.
In addition we provide constructions of Mendelsohn quasigroups
that fail distributivity for as many combinations of elements
as possible.
These systems are analogues of Hall triple systems and antimitre
Steiner triple systems respectively.
Keywords:Mendelsohn triple system, quasigroup, distributive, Moufang loop, Loeschian numbers Categories:20N05, 05B07 

2. CMB 2015 (vol 58 pp. 538)
 Li, Lili; Chen, Guiyun

Minimal Non Self Dual Groups
A group $G$ is self dual if every
subgroup
of $G$ is isomorphic to a quotient of $G$ and every quotient
of $G$ is isomorphic to
a subgroup of $G$. It is minimal nonself dual if every
proper subgroup of $G$
is self dual but $G$ is not self dual. In this paper, the structure
of minimal nonself dual groups is determined.
Keywords:minimal nonself dual group, finite group, metacyclic group, metabelian group Category:20D15 

3. CMB 2015 (vol 58 pp. 497)
 Edmunds, Charles C.

Constructing Double Magma on Groups Using Commutation Operations
A magma $(M,\star)$ is a nonempty set with a binary
operation. A double magma $(M, \star, \bullet)$ is a
nonempty set with two binary operations satisfying the
interchange law,
$(w \star x) \bullet (y\star z)=(w\bullet y)\star(x \bullet
z)$. We call a double magma proper if the two operations
are distinct and commutative if the operations are commutative.
A double semigroup, first introduced by Kock,
is a double magma for which both operations are associative.
Given a nontrivial group $G$ we define a system of two magma
$(G,\star,\bullet)$ using the commutator operations $x \star
y = [x,y](=x^{1}y^{1}xy)$ and $x\bullet y = [y,x]$. We show
that $(G,\star,\bullet)$ is a double magma if and only if $G$
satisfies the commutator laws $[x,y;x,z]=1$ and $[w,x;y,z]^{2}=1$.
We note that the first law defines the class of 3metabelian
groups. If both these laws hold in $G$, the double magma is proper
if and only if there exist $x_0,y_0 \in G$ for which $[x_0,y_0]^2
\not= 1$. This double magma is a double semigroup if and only
if $G$ is nilpotent of class two. We construct a specific example
of a proper double semigroup based on the dihedral group of order
16. In addition we comment on a similar construction for rings
using Lie commutators.
Keywords:double magma, double semigroups, 3metabelian Categories:20E10, 20M99 

4. CMB 2015 (vol 58 pp. 363)
5. CMB 2015 (vol 58 pp. 233)
 Bergen, Jeffrey

Affine Actions of $U_q(sl(2))$ on Polynomial Rings
We classify the affine actions of $U_q(sl(2))$ on commutative
polynomial rings in $m \ge 1$ variables.
We show that, up to scalar multiplication, there are two possible
actions.
In addition, for each action, the subring of invariants is a
polynomial ring in either $m$ or $m1$ variables,
depending upon whether $q$ is or is not a root of $1$.
Keywords:skew derivation, quantum group, invariants Categories:16T20, 17B37, 20G42 

6. CMB Online first
 Kong, Qingjun; Guo, Xiuyun

On $s$semipermutable or $s$quasinormally embedded subgroups of finite groups
Suppose that $G$ is a
finite group and $H$ is a subgroup of $G$. $H$ is said to be
$s$semipermutable in $G$ if $HG_{p}=G_{p}H$ for any Sylow
$p$subgroup $G_{p}$ of $G$ with $(p,H)=1$; $H$ is said to be
$s$quasinormally embedded in $G$ if for each prime $p$ dividing the
order of $H$, a Sylow $p$subgroup of $H$ is also a Sylow
$p$subgroup of some $s$quasinormal subgroup of $G$. We fix in
every noncyclic Sylow subgroup $P$ of $G$ some subgroup $D$
satisfying $1\lt D\lt P$ and study the structure of $G$ under the
assumption that every subgroup $H$ of $P$ with $H=D$ is either
$s$semipermutable or $s$quasinormally embedded in $G$.
Some recent results are generalized and unified.
Keywords:$s$semipermutable subgroup, $s$quasinormally embedded subgroup, saturated formation. Categories:20D10, 20D20 

7. CMB 2014 (vol 58 pp. 105)
 HosseinZadeh, Samaneh; Iranmanesh, Ali; Hosseinzadeh, Mohammad Ali; Lewis, Mark L.

On Graphs Associated with Character Degrees and Conjugacy Class Sizes of Direct Products of Finite Groups
The prime vertex graph, $\Delta (X)$, and the common divisor graph,
$\Gamma (X)$, are two graphs that have been defined on a set of
positive integers $X$.
Some
properties of these graphs have been studied in the cases where either
$X$ is the set of character degrees of a group or $X$ is the set of
conjugacy class sizes of a group. In this paper, we gather some
results on these graphs arising in the context of direct product of
two groups.
Keywords:prime vertex graph, common divisor graph, character degree, class sizes, graph operation Categories:20E45, 05C25, 05C76 

8. CMB 2014 (vol 58 pp. 182)
9. CMB 2014 (vol 58 pp. 196)
10. CMB 2014 (vol 57 pp. 884)
 Xu, Yong; Zhang, Xinjian

$m$embedded Subgroups and $p$nilpotency of Finite Groups
Let $A$ be a subgroup of a finite group $G$ and $\Sigma : G_0\leq
G_1\leq\cdots \leq G_n$ some subgroup series of $G$. Suppose that
for each pair $(K,H)$ such that $K$ is a maximal subgroup of $H$ and
$G_{i1}\leq K \lt H\leq G_i$, for some $i$, either $A\cap H = A\cap K$
or $AH = AK$. Then $A$ is said to be $\Sigma$embedded in $G$; $A$
is said to be $m$embedded in $G$ if $G$ has a subnormal subgroup
$T$ and a $\{1\leq G\}$embedded subgroup $C$ in $G$ such that $G =
AT$ and $T\cap A\leq C\leq A$. In this article, some sufficient
conditions for a finite group $G$ to be $p$nilpotent are given
whenever all subgroups with order $p^{k}$ of a Sylow $p$subgroup of
$G$ are $m$embedded for a given positive integer $k$.
Keywords:finite group, $p$nilpotent group, $m$embedded subgroup Categories:20D10, 20D15 

11. CMB 2014 (vol 57 pp. 621)
 Petrich, Mario

Combinatorially Factorizable Cryptic Inverse Semigroups
An inverse semigroup $S$ is combinatorially factorizable if $S=TG$
where $T$ is a combinatorial (i.e., $\mathcal{H}$ is the equality
relation) inverse subsemigroup of $S$ and $G$ is a subgroup of $S$.
This concept was introduced and studied by Mills, especially in the
case when $S$ is cryptic (i.e., $\mathcal{H}$ is a congruence on
$S$). Her approach is mainly analytical considering subsemigroups of
a cryptic inverse semigroup.
We start with a combinatorial inverse monoid and a factorizable
Clifford monoid and from an action of the former on the latter
construct the semigroups in the title. As a special case, we
consider semigroups which are direct products of a combinatorial
inverse monoid and a group.
Keywords:inverse semigroup, cryptic semigroup Category:20M18 

12. CMB 2014 (vol 57 pp. 708)
 Brannan, Michael

Strong Asymptotic Freeness for Free Orthogonal Quantum Groups
It is known that the normalized standard generators of the free
orthogonal quantum group $O_N^+$ converge in distribution to a free
semicircular system as $N \to \infty$. In this note, we
substantially improve this convergence result by proving that, in
addition to distributional convergence, the operator norm of any
noncommutative polynomial in the normalized standard generators of
$O_N^+$ converges as $N \to \infty$ to the operator norm of the
corresponding noncommutative polynomial in a standard free
semicircular system. Analogous strong convergence results are obtained
for the generators of free unitary quantum groups. As applications of
these results, we obtain a matrixcoefficient version of our strong
convergence theorem, and we recover a well known $L^2$$L^\infty$ norm
equivalence for noncommutative polynomials in free semicircular
systems.
Keywords:quantum groups, free probability, asymptotic free independence, strong convergence, property of rapid decay Categories:46L54, 20G42, 46L65 

13. CMB 2014 (vol 57 pp. 648)
 Tang, Juping; Miao, Long

On the ${\mathcal F}{\Phi}$Hypercentre of Finite Groups
Let $G$ be a finite group, $\mathcal F$ a class of groups.
Then $Z_{{\mathcal F}{\Phi}}(G)$ is the ${\mathcal F}{\Phi}$hypercentre
of $G$ which is the product of all normal subgroups of $G$ whose
nonFrattini $G$chief factors are $\mathcal F$central in $G$. A
subgroup $H$ is called $\mathcal M$supplemented in a finite group
$G$, if there exists a subgroup $B$ of $G$ such that $G=HB$ and
$H_1B$ is a proper subgroup of $G$ for any maximal subgroup $H_1$
of $H$. The main purpose of this paper is to prove: Let $E$ be a
normal subgroup of a group $G$. Suppose that every noncyclic
Sylow
subgroup $P$ of $F^{*}(E)$ has a subgroup $D$ such that
$1\lt D\lt P$ and every subgroup $H$ of $P$ with order $H=D$
is
$\mathcal M$supplemented in $G$, then $E\leq Z_{{\mathcal
U}{\Phi}}(G)$.
Keywords:${\mathcal F}{\Phi}$hypercentre, Sylow subgroups, $\mathcal M$supplemented subgroups, formation Categories:20D10, 20D20 

14. CMB 2014 (vol 57 pp. 277)
 Elkholy, A. M.; ElLatif, M. H. Abd

On Mutually $m$permutable Product of Smooth Groups
Let $G$ be a
finite group and $H$, $K$ two subgroups of G. A group $G$ is said to
be a mutually mpermutable product of $H$ and $K$ if $G=HK$ and
every maximal subgroup of $H$ permutes with $K$ and every maximal
subgroup of $K$ permutes with $H$. In this paper, we investigate the
structure of a finite group which is a mutually mpermutable product
of two subgroups under the assumption that its maximal subgroups are
totally smooth.
Keywords:permutable subgroups, $m$permutable, smooth groups, subgroup lattices Categories:20D10, 20D20, 20E15, 20F16 

15. CMB 2014 (vol 57 pp. 390)
 Morita, Jun; Rémy, Bertrand

Simplicity of Some Twin Tree Automorphism Groups with Trivial Commutation Relations
We prove simplicity for incomplete rank 2 KacMoody groups over algebraic closures of finite fields with trivial commutation relations between root groups corresponding to prenilpotent pairs.
We don't use the (yet unknown) simplicity of the corresponding finitely generated groups (i.e., when the ground field is finite).
Nevertheless we use the fact that the latter groups are just infinite
(modulo center).
Keywords:KacMoody group, twin tree, simplicity, root system, building Categories:20G44, 20E42, 51E24 

16. CMB 2014 (vol 57 pp. 231)
 Bagherian, J.

On the Multiplicities of Characters in Table Algebras
In this paper we show that every module of a table algebra
can be considered as a faithful module of some quotient table
algebra.
Also we prove that every faithful module of a table algebra
determines a closed subset which is a cyclic group.
As a main result we give some information about multiplicities
of characters in table algebras.
Keywords:table algebra, faithful module, multiplicity of character Categories:20C99, 16G30 

17. CMB 2013 (vol 57 pp. 506)
 Galindo, César

On Braided and Ribbon Unitary Fusion Categories
We prove that every braiding over a unitary fusion category is
unitary and every unitary braided fusion category admits a unique
unitary ribbon structure.
Keywords:fusion categories, braided categories, modular categories Categories:20F36, 16W30, 18D10 

18. CMB 2013 (vol 57 pp. 449)
 Alaghmandan, Mahmood; Choi, Yemon; Samei, Ebrahim

ZLamenability Constants of Finite Groups with Two Character Degrees
We calculate the exact amenability constant of the centre of
$\ell^1(G)$ when $G$ is one of the following classes of finite group:
dihedral; extraspecial; or Frobenius with abelian complement and
kernel. This is done using a formula which applies to all finite
groups with two character degrees. In passing, we answer in the
negative a question raised in work of the third author with Azimifard
and Spronk (J. Funct. Anal. 2009).
Keywords:center of group algebras, characters, character degrees, amenability constant, Frobenius group, extraspecial groups Categories:43A20, 20C15 

19. CMB 2013 (vol 57 pp. 125)
 Mlaiki, Nabil M.

Camina Triples
In this paper, we study Camina triples. Camina triples are a
generalization of Camina pairs. Camina pairs were first introduced
in 1978 by A .R. Camina.
Camina's work
was inspired by the study of Frobenius groups. We
show that if $(G,N,M)$ is a Camina triple, then either $G/N$ is a
$p$group, or $M$ is abelian, or $M$ has a nontrivial nilpotent or
Frobenius quotient.
Keywords:Camina triples, Camina pairs, nilpotent groups, vanishing off subgroup, irreducible characters, solvable groups Category:20D15 

20. CMB 2013 (vol 57 pp. 9)
21. CMB 2013 (vol 56 pp. 795)
 MacDonald, Mark L.

Upper Bounds for the Essential Dimension of $E_7$
This paper gives a new upper bound for the essential dimension and the
essential 2dimension of the split simply connected group of type
$E_7$ over a field of characteristic not 2 or 3. In particular,
$\operatorname{ed}(E_7) \leq 29$, and $\operatorname{ed}(E_7;2) \leq 27$.
Keywords:$E_7$, essential dimension, stabilizer in general position Categories:20G15, 20G41 

22. CMB 2012 (vol 57 pp. 326)
 Ivanov, S. V.; Mikhailov, Roman

On Zerodivisors in Group Rings of Groups with Torsion
Nontrivial pairs of zerodivisors in group rings are
introduced and discussed. A problem on the existence of nontrivial
pairs of zerodivisors in group rings of free Burnside groups of odd
exponent $n \gg 1$ is solved in the affirmative. Nontrivial pairs of
zerodivisors are also found in group rings of free products of groups
with torsion.
Keywords:Burnside groups, free products of groups, group rings, zerodivisors Categories:20C07, 20E06, 20F05, , 20F50 

23. CMB 2012 (vol 57 pp. 303)
24. CMB 2012 (vol 56 pp. 881)
25. CMB 2012 (vol 57 pp. 97)
 Levy, Jason

Rationality and the JordanGattiViniberghi decomposition
We verify
our earlier conjecture
and use it to prove that the
semisimple parts of the rational JordanKacVinberg decompositions of
a rational vector all lie in a single rational orbit.
Keywords:reductive group, $G$module, Jordan decomposition, orbit closure, rationality Categories:20G15, 14L24 
