Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 18G30 ( Simplicial sets, simplicial objects (in a category) [See also 55U10] )

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB 2011 (vol 55 pp. 319)

Jardine, J. F.
The Verdier Hypercovering Theorem
This note gives a simple cocycle-theoretic proof of the Verdier hypercovering theorem. This theorem approximates morphisms $[X,Y]$ in the homotopy category of simplicial sheaves or presheaves by simplicial homotopy classes of maps, in the case where $Y$ is locally fibrant. The statement proved in this paper is a generalization of the standard Verdier hypercovering result in that it is pointed (in a very broad sense) and there is no requirement for the source object $X$ to be locally fibrant.

Keywords:simplicial presheaf, hypercover, cocycle
Categories:14F35, 18G30, 55U35

2. CMB 2006 (vol 49 pp. 407)

Jardine, J. F.
Intermediate Model Structures for Simplicial Presheaves
This note shows that any set of cofibrations containing the standard set of generating projective cofibrations determines a cofibrantly generated proper closed model structure on the category of simplicial presheaves on a small Grothendieck site, for which the weak equivalences are the local weak equivalences in the usual sense.

Categories:18G30, 18F20, 55U35

3. CMB 2004 (vol 47 pp. 321)

Bullejos, M.; Cegarra, A. M.
Classifying Spaces for Monoidal Categories Through Geometric Nerves
The usual constructions of classifying spaces for monoidal categories produce CW-complexes with many cells that, moreover, do not have any proper geometric meaning. However, geometric nerves of monoidal categories are very handy simplicial sets whose simplices have a pleasing geometric description: they are diagrams with the shape of the 2-skeleton of oriented standard simplices. The purpose of this paper is to prove that geometric realizations of geometric nerves are classifying spaces for monoidal categories.

Keywords:monoidal category, pseudo-simplicial category,, simplicial set, classifying space, homotopy type
Categories:18D10, 18G30, 55P15, 55P35, 55U40

© Canadian Mathematical Society, 2014 :