1. CMB 2014 (vol 57 pp. 721)
 Bruillard, Paul; Galindo, César; Hong, SeungMoon; Kashina, Yevgenia; Naidu, Deepak; Natale, Sonia; Plavnik, Julia Yael; Rowell, Eric C.

Classification of Integral Modular Categories of FrobeniusPerron Dimension $pq^4$ and $p^2q^2$
We classify integral modular categories of dimension $pq^4$ and $p^2q^2$,
where
$p$ and $q$ are distinct primes. We show that such categories are always
grouptheoretical except for categories of dimension $4q^2$.
In these cases there are
wellknown examples of nongrouptheoretical categories, coming from
centers of
TambaraYamagami categories and quantum groups. We show that a
nongrouptheoretical integral modular category of dimension $4q^2$ is
equivalent to either one of these wellknown examples or is of dimension
$36$ and is twistequivalent to fusion categories arising from a
certain quantum group.
Keywords:modular categories, fusion categories Category:18D10 

2. CMB 2013 (vol 57 pp. 506)
 Galindo, César

On Braided and Ribbon Unitary Fusion Categories
We prove that every braiding over a unitary fusion category is
unitary and every unitary braided fusion category admits a unique
unitary ribbon structure.
Keywords:fusion categories, braided categories, modular categories Categories:20F36, 16W30, 18D10 

3. CMB 2004 (vol 47 pp. 321)
 Bullejos, M.; Cegarra, A. M.

Classifying Spaces for Monoidal Categories Through Geometric Nerves
The usual constructions of classifying spaces for monoidal categories
produce CWcomplexes with
many cells that, moreover, do not have any proper geometric meaning.
However, geometric nerves of
monoidal categories are very handy simplicial sets whose simplices
have
a pleasing geometric
description: they are diagrams with the shape of the 2skeleton of
oriented standard simplices. The
purpose of this paper is to prove that geometric realizations of
geometric nerves are classifying
spaces for monoidal categories.
Keywords:monoidal category, pseudosimplicial category,, simplicial set, classifying space, homotopy type Categories:18D10, 18G30, 55P15, 55P35, 55U40 
